Станок для электроэрозионной обработки металлов своими руками

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

При помощи электроискровых станков изготовляются сквозные и глухие отверстия любой формы, отверстия с криволинейными осями, вырезают заготовки из листа, выполняют плоское, круглое и внутреннее шлифование. Изготавливают штампы, пресс-формы, фильеры, режущий инструмент. Такие станки способны резать металл, сверлить отверстия любого диаметра, наращивать дефектные области деталей, производить ювелирные работы с драгоценными металлами, упрочнять поверхность изделий, шлифовать изделия самой сложной формы, извлекать застрявшие сломанные сверла и резцы.

На базе электроискрового метода обработки металлов создано немало станков промышленного назначения. Это высокоточная и дорогая техника, которую могут позволить себе купить только крупные предприятия, специализирующиеся на металлообработке.

Выбор технических характеристик станка

Описывающие технологические свойства станков данной модели параметры являются: точность выполнения операций, перемещения по координатам, режимы и скорость подач, режимы резания и нагрузки, наличие механизированной смены инструмента, возможность установки дополнительного оборудования, потребляемая мощность. Приводимые данные по производительности, чистоте поверхности и энергоемкости относятся к обработке различных по величине площадей на режимах, обусловливающих отсутствие участков оплавления и покрытия, т. е. при оптимальных плотностях токов.

Рассмотрим основные технологические характеристики. Например, скорость съема металла на максимальных режимах при обработке стали составляет в среднем 600 мм3/мин и близка к предельно возможной для этого способа обработки металлов. Удельный расход энергии на жестких режимах составляет 20-50 квт-ч/кг диспергированного металла. Износ инструмента по отношению к объему снятого металла достигает 25-120 и более процентов. Чистота поверхности на мягких режимах достигает 4-го класса при скорости съема 10-15 мм3/мин. Дальнейшее повышение чистоты поверхности сопровождается резким уменьшением скорости съема. Так, при получении 5-го класса чистоты поверхности, производительность электроискрового способа обработки меньше 5 мм3/мин. Удельный расход энергии на мягких режимах в десятки и сотни раз выше, чем на жестких.

При обработке твердого сплава производительность процесса на мягких режимах, примерно, в два-три раза меньше, чем при обработке стали, однако при этом получается несколько лучшая чистота поверхности. Применение более жестких режимов при обработке твердых сплавов лимитируется образованием на них трещин.

Компоновка станка

Основными узлами электроискровых станков являются: станина, механизм для установочных перемещений, рабочая ванна, насосная установка, генератор электрических импульсов и регулятор подачи. Станина является связующим звеном для основных узлов.

Механизм перемещений установки деталей и инструмента применяется, как и в металлорежущих станках.

Состав: ходовая часть, которая перемещается с помощью винтовых или шестеренных пар.

Рабочая ванна состоит из тонкой листовой стали и представляет собой цельносварную конструкцию. Клеммник крепится «на боку» рабочей ванны для того чтобы электроды присоединялись к разрядному контуру. От насосной установки подается рабочая жидкость. Размеры ванны зависят от деталей. Насосная установка представляется в виде емкости 50-60 литров.

Генератор импульсов. Для получения разрядов используется схема, которая включает в себя рабочие электроды, батарею, измерительную аппаратуру, источник постоянного тока и регулируемое сопротивление. Подробнее о нем рассмотрим ниже.

Электроэрозионный станок имеет искровой генератор, который выступает в качестве конденсатора. Принцип обработки заключается в накоплении энергии в течение длительного времени, а затем ее выброс в течение короткого промежутка времени.

Принцип работы генератора, который установлен на электроискровой станок, заключается в следующем:

    Диодный мост проводит выпрямление промышленного тока напряжением 220 или 380 Вольт;

    Установленная лампа ограничивает ток короткого замыкания и защиту диодного моста;

    Чем выше показатель нагрузки, тем быстрее проходит зарядка электроискрового станка;

    После того как зарядка закончится, лампа погаснет;

    Зарядив установленный накопитель можно поднести электрод к обрабатываемой заготовке;

    После того как проводится размыкание цепи, конденсатор снова начинает заряжаться;

    Время зарядки установленного накопительного элемента зависит от его емкости. Как правило, временной промежуток от 0,5 до 1 секунды;

    На момент разряда сила тока достигает несколько тысяч ампер;

    Провод от конденсатора к электроду должен иметь большое поперечное сечение, около 10 квадратных миллиметров. При этом провод должен быть изготовлен исключительно из меди.

Привод главного движения в станке

Линейный привод – это конструкция с бесконтактной передачей усилия, прямой привод без какой-либо кинематической цепи преобразования энергии в движение и вращательного движения в линейное, без люфтов, зоны нечувствительности и неравномерных подач. Все, что происходит при отработке каждого перемещения, это:

Командный импульс => Энергия взаимодействия магнитных полей => Линейное движение

В линейных приводах отсутствует многоступенчатое преобразование энергии в движение, что вызывает возникновение люфтов и неравномерных подач. Линейные приводы электроискрового станка способны корректировать зазор 500 раз в секунду с дискретностью подач 0,1 мкм. Выходит, оптимальный зазор практически в любой момент. И в итоге получаем оптимальные режимы, стабильно максимальный съем, высокую скорость обработки и качество поверхности.

Направляющие станка

Направляющие служат для перемещения по станине подвижных узлов станка, обеспечивая правильность траектории движения заготовки или детали и для восприятия внешних сил. Во всех металлорежущих станках применяются направляющие: скольжения, качения, комбинированные, жидкостного трения, аэростатические.

Предъявляющие требования: первоначальная точность изготовления, долговечность, высокая жесткость, высокие демпфирующие свойства, малые силы трения, простота конструкции, возможность обеспечения, регулирования зазора-натяга.

В зависимости от расположения направляющие делятся также на горизонтальные, вертикальные, наклонные.

Шпиндельные узлы станка

Шпиндель выполнен в виде массивного ротора, с расположенной внутри него крепежной цангой, а в верхней точке полости, образованной двумя встречно обращенными коническими поверхностями, установлен заборник(улавливатель) рабочей жидкости. Такая конструкция шпинделя улучшает условия работы на станке.

Рис.1 – Шпиндель электроискрового станка

В скользящем подшипнике 1 расположен вращающийся посредством клиноременной передачи 2 шпиндель 3, выполненный в виде ротора, в концентрической расточке которого расположена на напряженной или тугой посадке цанга 4, для крепления по внешней поверхности обрабатываемой детали 5. Внутренняя полость ротора образована двумя встречно обращенными коническими поверхностями 6 и 7, Рабочая жидкость, подаваемая от гидронасоса по трубке 8 в отверстие обрабатываемой детали, под действием центробежных сил вращающегося шпинделя собирается на периферии внутренней полости (кармана) ротора, откуда через заборник 9 по трубке 10 поступает в фильтрующий элемент гидронасоса.

Приводы подач станка

Лишь с недавнего времени начался выпуск электроискровых станков, а именно с совершенно новыми линейными двигателями. В данном выпуске были совершены и исправлены работы над регулированием скорости и ускорении, равномерным движением, реверсом, легкостью обслуживания и др.

Линейный двигатель в данном выпуске станков имеет двигатель, содержащий всего несколько элементов: электромагнитный статор и плоский ротор, которые содержат между собой только зазор из воздуха. Также имеется еще один немаловажный элемент и это оптическая измерительная линейка с высокой дискретностью (0.1 мкм). Без этого измерительного прибора система управления не сможет распознать координаты.

Но также ближе рассмотрим статор и ротор. Оба выполнены в виде плоских и легко снимаемых блоков. Но крепится статор к станине или колонне станка, а ротор – к рабочему органу.

В конструкции ротор совершенно прост. Он состоит из прямоугольных сильных постоянных магнитов. А магниты на тонкой плите из специальной высокопрочной керамики, коэффициент температурного расширения которой в два раза меньше чем у гранита.

Множество проблем линейного привода решились, так как стали использовать керамику одновременно с системой охлаждения. Соответственно «ушли» и проблемы с температурными факторами, с жесткостью конструкции, с наличием сильных магнитных полей и т.д.

Несущая система станка

Станина, колонна, каретка стола и др. являются несущей конструкцией, обычно состоящей из чугуна. Шабренные посадочные поверхности предназначены для направляющих, а также для состыковки двух конструкций между собой.

Типичные представители

В процессе подготовки данного реферата были разобраны несколько современных представителей станков электроискрового типа, оснащенных системой числового программного управления. Были представлены такие станки как, ALC 800G и AQ 15L . Их основные технические характеристики приведены ниже в таблицах 1 и 2.


Для изменения формы размеров заготовки из металла можно использовать электроэрозионный метод обработки. Он используется на протяжении многих лет в различных отраслях промышленности, характеризуется высокой точностью, но малой производительностью. Для применения данного метода обработки следует использовать специальный электроискровой станок, который можно приобрести или сделать своими руками. Самодельный вариант исполнения можно использовать в быту при мелкосерийном производстве. Его стоимость изготовления своими руками будет ниже, чем покупка промышленного варианта исполнения. Поэтому рассмотрим подробнее то, как можно сделать рассматриваемый электроискровой станок своими руками, что для этого понадобиться и в каких случаях он сможет использоваться.

Самодельный элетроискровой станок

Принцип рассматриваемого метода обработки

Особенностью обработки электроискровой установкой можно назвать то, что испарение металла происходит из-за воздействия определенного заряда на поверхность заготовки. Примером подобного воздействия можно назвать замыкание конденсатора на металлической пластинке – образуется лунка определенных размеров. Электроэрозионный разряд создает высокую температуру, которая просто испаряет металл с поверхности. Стоит отметить, что станок из этой группы уже используется на протяжении последних 50 лет в различных сферах промышленности. Главным условием использования подобного электроискрового станка можно назвать то, что заготовка должна быть изготовлена из определенного металла. При этом учитывается не степень обрабатываемости, а электропроводящие свойства.

Основной элемент конструкции

Электроэрозионный станок имеет искровой генератор, который выступает в качестве конденсатора. Для обработки следует использовать накопительный элемент большой емкости. Принцип обработки заключается в накоплении энергии в течение длительного времени, а затем ее выброс в течение короткого промежутка времени. По этому принципу работает также устройство лазерной установки: уменьшение промежутка времени выброса энергии приводит к увеличению плотности тока, а значит существенно повышается температура.


Электрическая схема электроискровой установки

Принцип работы генератора, который установлен на электроэрозионный станок, заключается в следующем:

  1. диодный мост проводит выпрямление промышленного тока напряжением 220 или 380 Вольт;
  2. установленная лампа ограничивает тока короткого замыкания и защиты диодного моста;
  3. чем выше показатель нагрузки, тем быстрее проходит зарядка электроискрового станка;
  4. после того как зарядка закончится, лампа погаснет;
  5. зарядив установленный накопитель можно поднести электрод к обрабатываемой заготовке;
  6. после того как проводится размыкание цепи, конденсатор снова начинает заряжаться;
  7. время зарядки установленного накопительного элемента зависит от его емкости. Как правило, временной промежуток от 0,5 до 1 секунды;
  8. на момент разряда сила тока достигает несколько тысяч ампер;
  9. провод от конденсатора к электроду должен иметь большое поперечное сечение, около 10 квадратных миллиметров. При этом провод должен быть изготовлен исключительно из меди.

Частота генерации при подводе электрода электроискрового станка составляет 1 Гц.

Конструкция электроискрового станка

Есть схемы, реализовать которые достаточно сложно. Рассматриваемая схема может быть реализована своими руками. Детали для устанавливаемого генератора не в дефиците, их можно приобрести в специализированном магазине. Конденсаторы также имеют большое распространение, как и диодный мост. При этом, создавая самодельный электроискровой станок, следует учесть нижеприведенные моменты:

  1. на конденсаторе указываемое напряжение не должно быть менее 320 Вольт;
  2. количество накопителей энергии и их емкость выбираются с учетом того, что общая емкость должна составлять 1000 мкФ. Соединение всех конденсаторов должно проводится параллельно. Стоит учитывать, что мощность самодельного варианта исполнения увеличивается в случае необходимости получения более сильного искрового удара;
  3. лампу устанавливают в фарфоровый патрон. Следует защитить лампу от падения, устанавливается автомат защиты с силой токи от 2 до 6 Ампер;
  4. автомат используется для включения цепи;
  5. электроды должны иметь прочные зажимы;
  6. для минусового провода используется винтовой зажим;
  7. Плюсовой провод имеет зажим с медного электрода и штатив для направления.

Самодельный проволочный вариант исполнения имеет относительно небольшие габаритные размеры.

Самодельный электроискровой станок

Основные элементы схемы электроискрового оборудования

Схема представлена нижеприведенными элементами:

  1. электрод;
  2. винт зажима, используемый для фиксации плюсового провода и электрода;
  3. втулка для направления;
  4. корпус, изготавливаемый из фторопласта;
  5. отверстие, используемое для подачи масла;
  6. штатив.

Корпус, который используется для соединения всех элементов, вытачивается их фторопласта. В качестве втулки используется заземляющий штырь, в котором вдоль оси вытачивается отверстие с резьбой для крепления электрода. Все элементы конструкции крепятся на штатив, который изготавливается с возможностью изменения высоты. Также создается отверстие, через которое подается масло.

Схема электроискрового станка

Зачастую резка проводится при использовании устройства, которое питается от пускателя с катушкой, подключаемой к напряжению 220В. Шток пускателя может иметь ход 10 миллиметров. Обмотку пускателя подключают параллельно лампе. Именно поэтому на момент зарядки конденсаторов лампа горит, а после завершения этого процесса – она гаснет. После того, как шток был опущен, происходит искровой заряд.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Станок для электроэрозионной обработки металлов своими руками

Электроэрозионный станок предназначен для вырезания металлических деталей сложной формы. Современное прошивное оборудование позволяет обрабатывать токопроводящий материал сразу по четырем осям, производить изделия любых форм даже из твердых сплавов, трудно поддающихся механической обработке.

Возможности электроэрозионных станков

электроэрозионный проволочный станок

Электроэрозионный станок справляется с выполнением сложных технологических задач:

  • выполнение углублений и отверстий сложной конфигурации, в том числе глухих проемов;
  • обработка титана, инструментальных и легированных сталей, твердых сплавов и закаленной стали высочайшей твердости;
  • выполнение выемок различной конфигурации на внутренних поверхностях детали;
  • отверстия с резьбой в заготовках из твердых металлов;
  • изготовление деталей, которое невозможно или сложно на токарных и фрезерных станках с программным управлением.

Виды обработки

Существует несколько разновидностей электроэрозионной обработки:

  • комбинированная - производится одновременно с иными типами обработки;
  • электроэрозионно-абразивная - материал разрушается с помощью электричества и шлифуется абразивными частицами;
  • электрохимическая - металл растворяется в электролите под воздействием тока;
  • анодно-механическая - металл растворяется с появлением пленки окисей, сочетается с электроэрозионным методом;
  • упрочнение;
  • объемное копирование - метод обработки, позволяющий получить на болванке проекцию инструмента;
  • маркирование;
  • шлифование - под воздействием электричества происходит шлифовка металла;
  • прошивание - инструмент врезается в болванку и формирует отверстие;
  • вырезание - инструмент-электрод совершает движения подачи и постоянно перематывается, снимает верхние слои заготовки, создавая необходимую форму;
  • отрезка - разделение болванки на отдельные куски;
  • доводка.

Принцип работы станка

Первичная обработка болванки и снятие основных объемов материала происходит на токарном или фрезерном станке с ЧПУ. Принцип работы электроэрозионного оборудования в том, что металл обрабатывается разрядами тока, появляющимися между заготовкой и инструментом. В качестве резца используется натянутая проволока.

Генератор выпускает ток импульсами, не изменяя свойства рабочей среды. Когда между электродами появляется напряженность выше критической, формируется плазменный канал, разрушающий поверхность заготовки. Появляется маленькая выемка. Полярность тока подбирается таким образом, чтобы деталь разрушалась сильнее.

С целью снижения износа резца создаются униполярные электроимпульсы. В зависимости от длины импульса выбирается полярность, так как при небольшой продолжительности быстрее изнашивается отрицательный электрод, при повышенной - изнашивается катод. Фактически при обработке применяются оба принципа создания униполярных электроимпульсов: на болванку подают переменно положительный заряд и отрицательный. Вода уменьшает температуру инструмента (проволоки) и уносит продукты разрушения.

Под воздействием высокочастотных импульсов эрозия проходит равномерно по длине зазора, постепенно расширяя самое узкое место. Постепенно инструмент (проволоку) или деталь продвигают в необходимом направлении, увеличивая площадь воздействия. Обработать по этому принципу можно деталь из любого материала, пропускающего электричество.

Время обработки зависит от физических свойств материала (электропроводности, теплопроводности, температуры плавления). Чем быстрее выполняется работа, тем больше шероховатостей остается на поверхности. Наилучший эффект достигается путем многопроходной обработки с понижающейся мощностью импульсов.

Конструкция станка

Основные элементы электроэрозионного станка:

  • станина - выполняется из специального особо прочного чугуна, придающего крепость и устойчивость конструкции.
  • рабочий стол - прямоугольной формы из нержавеющей стали;
  • рабочая ванна из нержавейки;
  • устройство подачи проволоки состоит из приводных катушек (керамика), направляющих для проволоки и системы привода;
  • устройство автоматической установки проволоки (устанавливается по желанию заказчика);
  • блок диэлектрика состоит из картонных или бумажных фильтров, емкости диэлектрика и емкости для ионообменной массы, насоса для прогонки воды;
  • генератор используется антиэлектролизный, который предупреждает разрушение заготовки;
  • система числового программного управления с дисплеем.

Делаем станок своими руками

схема искрового генератора

Основная сложность в изготовлении станка своими руками - это сборка искрового генератора. За некоторое время он должен скопить достаточное количество электроэнергии и залпом ее выбросить. Необходимо добиться наикратчайшего промежутка выброса тока, чтобы плотность его была как можно выше. Комплектующие для него можно своими руками вытащить из старого телевизора или купить.

схема самодельного станка: 1 - электрод; 2 - винт зажима электрода; 3 - винт зажима плюсового контакта; 4 - втулка направления; 5 - корпус из фторопласта; 6 - проем для притока масла; 7 - штатив

Конденсатор должен выдерживать от 320 В, с суммарной емкостью от 1 тыс. мкФ. Все детали собираются в заизолированном коробе из фторопласта. Из штыря заземления евророзетки можно сделать направляющую втулку для электрода. Его продвигают вперед по мере испарения, для чего расслабляется винт зажима. Штатив для установки всего устройства должен быть с регулируемой высотой. В отверстие для притока масла вставляется трубочка, а втулка направления прокапывает маслом по продольной линии электрода.

К электроду подключается привод (пускатель с катушкой 230В). Ход штока фиксирует глубину отверстия. Во время зарядки конденсаторов включается лампа, а шток пускателя удерживается внутри. Как только конденсаторы достаточно зарядились, лампа тухнет, шток продвигается вниз. Он прикасается к заготовке и происходит разряд в виде искры, цикл повторяется. Частота повторений зависит от мощности лампы.

При работе масло может воспламениться. Важно соблюдать меры безопасности! После всеъ этих действий, мы получим эрозионный станок, сделанный своими руками.

Видео демонстрирует возможности электроэрозионного станка:

stanokgid.ru

Как сделать. - Эрозионный станок.

КАК СДЕЛАТЬ ЭЛЕКТРО-ИСКРОВОЙ СТАНОК

(гаражный)

Купил по цене лома,вот такой штатив. И давно болела голова что делать с ним. Как говорится время подошло.Всё это делается для того чтоб, в гаражных условиях можно было сделать маленькие кокили. Но чтоб добиться хороших результатов надо хорошо работать и упорно стараться.


Сам штатив. Приступил к изготовлению головки. Головка состоит из эл. катушки,ярмо и демпферное устройство.


Нижняя часть головки,с двумя винтами,для крепления мягкой вставки и электрода. Верхняя часть головки состоит из П образной скобой с болтом для регулировки пружин. Ярмо до середины катушки состоит из железа а продолжение из текстолита. В конце шайба и между шайбой две пружины.


Головка в сборе. Вдоль ярма в железной части сделан паз,в который завинчиваем стопор.


В нижней части станины сделал ванночку для керосина. Собирал по этой схеме. Но конденсатор который стоит между рабочими электродами подбирается во время работы. Его ёмкость зависит от многих факторов.


Электрическую схему собрал в таком корпусе. Но на всякий случай всё поместил в левую часть шкафчика. Оставил половину пустого места,для электронного генератора на будущее.


Чтоб проверить станок из бронзы сделал вот такой электрод. Готовый электрод.


Оставленный след. Далеко до совершенства,но будем работать над этим.


Такое должно получится только с электронным генератором.

Смотреть работу.

cazac.ucoz.com

Малогабаритный электроискровой станок

Простая электроискровая установка (рис. 1) позволяет легко и быстро обрабатывать небольшие детали из электропроводящих материалов любой твердости. С ее помощью можно получать сквозные отверстия любой формы, извлекать сломавшийся резьбовой инструмент, прорезать тонкие щели, гравировать, затачивать инструмент и мн.др.

Сущность процесса электроискровой обработки заключается в разрушении материала заготовки под действием импульсного электрического разряда. Благодаря малой площади рабочей поверхности инструмента в месте разряда выделяется большое количество тепла, которое расплавляет вещество обрабатываемой детали. Процесс обработки наиболее эффективно идет в жидкости (например, в керосине), омывающей место контакта вибрирующего инструмента и детали и уносящей с собой продукты эрозии. Инструментом служат латунные стержни (электроды), повторяющие форму предполагаемого отверстия.

Рис. 1. Малогабаритная электроискровая установка: 1 - обрабатываемая деталь; 2 - инструмент; 3 - электромагнитный вибратор; 4 - зажимное устройство; 5 - ванночка.

Принципиальная электрическая схема установки изображена на рис. 2. Работает установка следующим образом. Разрядный конденсатор С1 соединен своим плюсовым выводом с обрабатываемой деталью 1. Минус его подключен к инструменту 2. Электромагнитный вибратор 3 сообщает инструменту непрерывные колебания. Этим обеспечивается постоянное искрение в месте контакта и предотвращается возможность сварки инструмента с деталью. Обрабатываемая деталь 1 закреплена в зажимном устройстве 4, которое имеет надежный электрический контакт с ванночкой 5.

Силовой трансформатор собран на сердечнике Ш32 из обычной трансформаторной стали. Толщина набора 40 мм. Первичная обмотка содержит 1100 витков провода ПЭВ 0,41 с отводом от 650-го витка. Вторичная обмотка имеет 200 витков провода ПЭВ-2 диаметром 1,25 мм. Между первичной и вторичной обмотками помещена экранирующая обмотка III , состоящая из одного слоя, намотанного проводом ПЭВ 0,18. Емкость разрядного конденсатора 400 мкФ (два конденсатора типа КЭ-2 200 х 50 В). Реостат R1 рассчитан на ток 3-5 А. Этот реостат намотан нихромовым проводом диаметром 0,5-0,6 мм на сопротивлении ВС-2.

Рис. 2. Принципиальная электрическая схема электроискровой установки.

Диоды Д1-Д4 типа Д304, можно использовать и другие типы диодов. На выходе выпрямителя напряжение порядка 24-30 В. Можно использовать источники питания и с более низким напряжением, но с большим током, чтобы мощность, потребляемая цепью заряда, была не менее 50-60 Вт.

При работе установки происходит непрерывное искрение. Для уменьшения помех, создаваемых установкой, в цепь ее питания необходимо включить простейший фильтр радиопомех.

Прилагается фотоинструкция.

Эрозионный станок.pdf (542 кБ)

Электроэрозионные станки работают по принципу воздействия электрическими зарядами на обрабатываемую поверхность детали находящейся в электропроводной среде.

За счет этого возникает электрическая эрозия в заданном направлении, что позволяет получить конкретную форму или размеры детали.

1 Принцип РАБОТЫ

Электроэрозионная резка происходит во время возникновения импульса газового электрического разряда, который имеет направленное действие. Схема такова, что при этом происходит разрушение и удаление части материала в зоне воздействия.

Под влиянием высокой температуры в области возникновения разрядов происходит плавление металла (латунная или медная проволока) с частичным его испарением. Для того чтобы получить необходимую температуру, схема использует генератор импульсов, позволяющий сконцентрировать большое количество энергии.

Электродами, между которыми возникает разряд, являются сама деталь, с одной стороны, и инструмент — с другой. Пространство между ними заполняется рабочей жидкостью, которая постоянно подается при работе станка через подводящую трубку (латунная или медная), если обработка не происходит в специальной ванной.

Электроэрозионные станки, в которых используются электрические разряды различных видов и способов их получения, могут производить несколько разновидностей электроэрозионной обработки металла:

  • электроискровая схема;
  • электроконтактная схема;
  • электроимпульсная схема;
  • анодно-механическая (комбинированная схема).

В работе с различными материалами прошивочный электроэрозионный станок с ЧПУ имеет одно ограничение — у них должна быть хорошая электрическая проводимость. Если материал не обладает этим свойством, то прошивной станок работать не сможет.

1.1 Процесс работы электроэрозионного станка (видео)


2 Основные виды электроэрозионной обработки

Электроэрозионный проволочно вырезной станок применяется при следующих видах электроэрозионной обработки деталей из металла:

  • прошивании;
  • объемном копировании;
  • вырезании/отрезании;
  • шлифовании;
  • доводке;
  • маркировании;
  • упрочнении.

Возможна электроконтактная обработка при выполнении:

  • резки;
  • работы с телами вращения;
  • обработки внутренних полостей;
  • зубчатых поверхностей;
  • обработки плоских и конических поверхностей;
  • упрочнения.

2.1 Станки фирмы Sodick

Японская производственная компания Sodick Co LTD, которая начала свою деятельность в 1976 году, на сегодняшний день является мировым лидером по производству и продажам электроэрозионных станков.

Представительства компании Sodick имеются в Азии, США, Европе и ее продукция пользуется заслуженной популярностью у промышленных предприятий, которые имеют дело с обработкой таких материалов как титан и инструментальная сталь.

Sodick — единственный в мире производитель, который выпускает электроэрозионный прошивной станок с ЧПУ, имеющий линейные двигатели и рабочую зону сделанную из керамики. Специалисты компании Sodick разработали революционную электроискровую технологию зеркальной полировки обрабатываемого материала.

Схема оборудования Sodick работает по принципу прямого воздействия тепловой энергии на обрабатываемую поверхность металла. При этом отсутствует какое-либо силовое воздействие на материал, что значительно повышает качество производимых работ.

Изготовленные на электроэрозионных станках Sodick детали получают дополнительную прочность и устойчивость к обычной коррозии, так как в процессе работы над ними происходит изменение физических характеристик металла.

2.2 Копировально-прошивочный станок 4л721ф1

Прошивочный станок 4л721ф1 имеет адаптивное ЧПУ и используется при обработке отверстий и полостей в заготовках из металла трудно поддающегося обработке. С его помощью, также можно изготовить штампы, пресс-формы, фильеры и т.д.

Установленные в прошивочный станок 4л721ф1 генератор импульсов ШГИ-80-440М2, высокоскоростной привод, устройство индикации в цифровом виде, быстросъемные приспособления, дают возможность значительно увеличить его производительность и качество обработки.

Станок 4л721ф1 не требует наличия особо прочного фундамента в производственном помещении, так как устанавливается на виброустойчивые опоры.

На станке 4л721ф1 возможна обработка деталей, которые имеют максимальные размеры по длине, ширине и высоте — 280×250х120 мм.

2.3 Станки компании P&G (dk7732, dk7740, dk7725)

Станки dk7732, dk7740, dk7725 предназначены для изготовления измерительных инструментов, инструментальной оснастки, деталей для машин и механизмов (шестерни, зубчатые колеса и т.д.).

У проволочно-вырезных станков dk7732, dk7740, dk7725 имеется несколько особенностей:

  • при работе используется молибденовая проволока, что позволяет использовать ее многократно. Для работы станка в течение недели достаточно 200 метров;
  • станки оснащены удобным ЧПУ. Достаточно выполнить чертеж детали в программе CAD и загрузить его в ЧПУ станка при помощи съемного носителя;
  • у них высокая производительность — обработка до 160 кв. мм поверхности за минуту.

2.4 Станок своими руками

Самодельный электроэрозионный станок можно собрать при наличии искрового генератора. Это самый сложный элемент в конструкции инструмента, который создается своими руками. За короткий отрезок времени должна быть собрана электрическая энергия в достаточном количестве для ее мгновенного выброса.

Многие комплектующие для электроэрозионного станка который планируется сделать своими руками можно найти в старом телевизоре. К примеру — конденсатор емкостью 1000 мкФ. Все необходимые детали размещаются в коробе сделанном из фторопласта, который должен быть полностью изолирован. Направляющую втулку электрода можно сделать из заземляющего штыря розетки европейского типа.

Электродом является молибденовая проволока, которая по мере испарения продвигается с использованием винтового зажима. Втулка должна иметь отверстие для прохождения охлаждающей жидкости и одновременно рабочей среды по оси совпадающей с расположением электрода.

К электроду необходимо подключить привод (пускатель который имеет катушку на 230 В). Прошивочный элемент регулируется по глубине отверстия величиной хода штока.

При зарядке конденсаторов горит лампа, а шток пускателя находится внутри. Как только заряд конденсаторов выполнен, лампа гаснет, шток двигается вниз к обрабатываемой детали и при контакте с ней происходит искровой разряд. Воздействие на заготовку (деталь) происходит циклически, а частота циклов зависит от мощности осветительной лампы.

Основные узлы, из которых состоит электроэрозионный станок сделанный своими руками:

  • электрод;
  • винт для крепления электрода;
  • зажим плюсового контакта;
  • направляющая втулка;
  • фторопластовый корпус;
  • выемка для притока рабочей жидкости (масла)%;
  • штатив.
Элетроэрозионный станок схема

Боле подробно ознакомиться с устройством и получить информацию о номиналах электрических компонентов можно на стр. 154 .

2.5 Расходные материалы

Для того чтобы качественно выполнять работы по изготовлению деталей из особо прочного металла, необходимы следующие расходные материалы для электроэрозионных станков:

  • латунная проволока для электроэрозионных станков (возможен вариант с цинковым покрытием), латунная проволока с диаметром 0,1, 0,2, 0,25 мм;
  • молибденовая проволока сечением 0,14 мм (поставляется катушками по 200м весом 32 кг);
  • латунная или медная трубка (электрод) сечением от 0,5 до 6 мм и длиной от 30 до 40 см. Латунная может иметь от одного до трех отверстий;
  • модульные трубки для подачи охлаждающей жидкости, которые изготавливаются из высококачественных полимеров.

Электроэрозионный станок предназначен для вырезания металлических деталей сложной формы. Современное прошивное оборудование позволяет обрабатывать токопроводящий материал сразу по четырем осям, производить изделия любых форм даже из твердых сплавов, трудно поддающихся механической обработке.

Возможности электроэрозионных станков

Электроэрозионный станок справляется с выполнением сложных технологических задач:

  • выполнение углублений и отверстий сложной конфигурации, в том числе глухих проемов;
  • , инструментальных и легированных сталей, твердых сплавов и закаленной стали высочайшей твердости;
  • выполнение выемок различной конфигурации на внутренних поверхностях детали;
  • отверстия с резьбой в заготовках из твердых металлов;
  • изготовление деталей, которое невозможно или сложно на токарных и фрезерных станках с программным управлением.

Виды обработки

Существует несколько разновидностей электроэрозионной обработки:

  • комбинированная — производится одновременно с иными типами обработки;
  • электроэрозионно-абразивная — материал разрушается с помощью электричества и шлифуется абразивными частицами;
  • электрохимическая — металл растворяется в электролите под воздействием тока;
  • анодно-механическая — металл растворяется с появлением пленки окисей, сочетается с электроэрозионным методом;
  • упрочнение;
  • объемное копирование — метод обработки, позволяющий получить на болванке проекцию инструмента;
  • маркирование;
  • шлифование — под воздействием электричества происходит шлифовка металла;
  • прошивание — инструмент врезается в болванку и формирует отверстие;
  • вырезание — инструмент-электрод совершает движения подачи и постоянно перематывается, снимает верхние слои заготовки, создавая необходимую форму;
  • отрезка — разделение болванки на отдельные куски;
  • доводка.
  • Принцип работы станка

    Первичная обработка болванки и снятие основных объемов материала происходит на токарном или фрезерном станке с ЧПУ. Принцип работы электроэрозионного оборудования в том, что металл обрабатывается разрядами тока, появляющимися между заготовкой и инструментом. В качестве резца используется натянутая проволока.

    Генератор выпускает ток импульсами, не изменяя свойства рабочей среды. Когда между электродами появляется напряженность выше критической, формируется плазменный канал, разрушающий поверхность заготовки. Появляется маленькая выемка. Полярность тока подбирается таким образом, чтобы деталь разрушалась сильнее.

    С целью снижения износа резца создаются униполярные электроимпульсы. В зависимости от длины импульса выбирается полярность, так как при небольшой продолжительности быстрее изнашивается отрицательный электрод, при повышенной — изнашивается катод. Фактически при обработке применяются оба принципа создания униполярных электроимпульсов: на болванку подают переменно положительный заряд и отрицательный. Вода уменьшает температуру инструмента (проволоки) и уносит продукты разрушения.

    Под воздействием высокочастотных импульсов эрозия проходит равномерно по длине зазора, постепенно расширяя самое узкое место. Постепенно инструмент (проволоку) или деталь продвигают в необходимом направлении, увеличивая площадь воздействия. Обработать по этому принципу можно деталь из любого материала, пропускающего электричество.

    Время обработки зависит от физических свойств материала (электропроводности, теплопроводности, температуры плавления). Чем быстрее выполняется работа, тем больше шероховатостей остается на поверхности. Наилучший эффект достигается путем многопроходной обработки с понижающейся мощностью импульсов.

    Конструкция станка

    Основные элементы электроэрозионного станка:

    • станина — выполняется из специального особо прочного чугуна, придающего крепость и устойчивость конструкции.
    • рабочий стол — прямоугольной формы из нержавеющей стали;
    • рабочая ванна из нержавейки;
    • устройство подачи проволоки состоит из приводных катушек (керамика), направляющих для проволоки и системы привода;
    • устройство автоматической установки проволоки (устанавливается по желанию заказчика);
    • блок диэлектрика состоит из картонных или бумажных фильтров, емкости диэлектрика и емкости для ионообменной массы, насоса для прогонки воды;
    • генератор используется антиэлектролизный, который предупреждает разрушение заготовки;
    • система числового программного управления с дисплеем.

    Делаем станок своими руками

    Основная сложность в изготовлении станка своими руками — это сборка искрового генератора. За некоторое время он должен скопить достаточное количество электроэнергии и залпом ее выбросить. Необходимо добиться наикратчайшего промежутка выброса тока, чтобы плотность его была как можно выше. Комплектующие для него можно своими руками вытащить из старого телевизора или купить.

    схема самодельного станка: 1 — электрод; 2 — винт зажима электрода; 3 — винт зажима плюсового контакта; 4 — втулка направления; 5 — корпус из фторопласта; 6 — проем для притока масла; 7 — штатив

    Конденсатор должен выдерживать от 320 В, с суммарной емкостью от 1 тыс. мкФ. Все детали собираются в заизолированном коробе из фторопласта. Из штыря заземления евророзетки можно сделать направляющую втулку для электрода. Его продвигают вперед по мере испарения, для чего расслабляется винт зажима. Штатив для установки всего устройства должен быть с регулируемой высотой. В отверстие для притока масла вставляется трубочка, а втулка направления прокапывает маслом по продольной линии электрода.

    К электроду подключается привод (пускатель с катушкой 230В). Ход штока фиксирует глубину отверстия. Во время зарядки конденсаторов включается лампа, а шток пускателя удерживается внутри. Как только конденсаторы достаточно зарядились, лампа тухнет, шток продвигается вниз. Он прикасается к заготовке и происходит разряд в виде искры, цикл повторяется. Частота повторений зависит от мощности лампы.

    При работе масло может воспламениться. Важно соблюдать меры безопасности! После всеъ этих действий, мы получим эрозионный станок, сделанный своими руками.

    Видео демонстрирует возможности электроэрозионного станка:

В направлении металлообработки широкое распространение получил метод электроэрозионной обработки (ЭЭО). Электроэрозионный метод обработки был открыт советскими учеными в 1947 году.

Эта технология смогла значительно облегчить процесс обработки металла, особенно это помогло при обработке металлов высокой прочности, при изготовлении деталей сложной конструкции, а также в других направлениях.

Работа метода основана на воздействии на деталь электрическими разрядами в диэлектрической среде, вследствие чего происходит разрушение металла или изменение его физических свойств.

Применение метода ЭЭО:

  • При обработке деталей из металлов со сложными физико-химическими свойствами;
  • При изготовлении деталей сложных геометрических параметров, со сложно выполнимой механической обработкой;
  • При легировании поверхности для повышения показателей износоустойчивости и придания деталям требуемых качеств;
  • Повышение характеристик верхнего слоя металлической поверхности (упрочнение) за счет окисления материала под воздействием электрического разряда;
  • Маркирование изделий без вредоносного влияния, что присутствует при механическом клеймлении.

Для выполнения различных операций применяются разные виды электроэрозионной обработки. На промышленных станках устанавливаются устройства числового программного управления (ЧПУ), что значительно упрощает применение любого вида обработки.

Виды электроэрозионной обработки материала:

  • Электроискровой вид обработки применяется при резке твердосплавных материалов, фигурной резке и для проделывания отверстий в металлах высокой прочности. Дает высокую точность, но скорость работы невелика. Применяется в прошивных станках.
  • Электроконтактный способ обработки основан на местном расплавлении металла дуговыми разрядами с последующим удалением отработанного материала. Метод имеет более низкую точность, но более высокую скорость работы, чем электроискровой способ. Применяется при работе с большими деталями из чугуна, легированной стали, тугоплавких и других металлов.
  • Электроимпульсный метод сродни электроискровому, но применяются дуговые разряды продолжительностью до 0.01 секунды. Это дает высокую производительность при относительно хорошем качестве.
  • Анодно-механический метод основан на сочетании электрического и механического воздействия на металл. Рабочий инструмент – диск, а рабочая среда – жидкое стекло или сходное по характеристикам вещество. На обрабатываемую деталь и диск подают определенное напряжение, при разряде металл расплавляется, а шлам удаляется диском механически.

В промышленности применяются станки, работающие на основе метода электроэрозионной обработки металла. Они классифицируются по нескольким параметрам: принцип работы, управление, наличие ЧПУ и т.д.

Виды станков, работающих на принципе ЭЭО:

  • Электроэрозионный проволочный станок;
  • Электроэрозионный проволочно-вырезной станок;
  • Электроэрозионный прошивной станок.

Станок ЭЭО в связи со своей многофункциональностью в хозяйстве нужен, а порой и вовсе не заменим. Заиметь такой аппарат в своем гараже хотел бы каждый. К сожалению, купить такой станок заводской сборки очень накладно и зачастую не представляется возможным. Выход из такой ситуации есть – собрать своими руками.

Вырезной и прошивной станок

Вопреки предвзятому мнению о сложности и невыполнимости такой задачи это не так. Это вполне посильная задача для простого обывателя, хотя все не так просто. Самый простой вид станка – это вырезной станок, предназначается для обработки деталей из легированных, тугоплавких и других прочных металлов.

В электрической схеме присутствуют: источник питания, диодный мост, лампочка и набор конденсаторов, соединенных в параллельную цепь. На выход подключаются электрод и обрабатываемая деталь. Отметим еще раз, что это принципиальная схема для образного понятия принципа работы устройства. На практике схема дополнена различными элементами, позволяющими отрегулировать прошивной станок под требуемые параметры.

Общие требования к электрической схеме вырезного станка:

  • Учитывайте необходимую мощность станка при выборе трансформатора;
  • Напряжение на конденсаторе должно быть больше 320 В;
  • Общая емкость конденсаторов должна быть не меньше значения в 1000 мкФ;
  • Кабель, идущий от схемы к контактам, должен быть только медным и сечением не меньше 10 мм;

Один из примеров рабочей схемы:

Как сразу видно, схема значительно отличается от принципиальной, но в то же время не является чем-то сверхъестественным. Все детали электрической схемы можно найти в специализированных магазинах или просто в старых электронных приборах, давно пылящихся где-нибудь в гараже. Отличное решение – применить ЧПУ для управления станком, но такой способ управления стоит немало, да и подключение его на самодельный станок требует определенных навыков и знаний.

Конструкция станка

Все элементы электрической схемы необходимо надежно закрепить в корпусе из диэлектрика, в качестве материала желательно использовать фторопласт или другой с похожими характеристиками. На панель можно вывести необходимые тумблеры, регуляторы и измерительные приборы.

На станине нужно закрепить держатель для электрода (должен быть закреплен подвижно) и обрабатываемой детали, а также ванночку для диэлектрика, в которой и будет проходить весь процесс. Как дополнение можно поставить автоматическую подачу электрода, это будет очень удобно. Процесс работы такого станка очень медленный, и для проделывания глубокого отверстия уходит много времени.

Проволочный станок своими руками

Электрическая схема проволочного станка та же, что и на вырезном станке, за исключением некоторых нюансов. Рассмотрим другие отличия проволочного станка. Конструктивно проволочный станок тоже похож на вырезной, но есть отличие – это рабочий элемент станка. На проволочном станке, в отличие от вырезного, – это тонкая медная проволока на двух барабанах, и в процессе работы проволока перематывается с одного барабана на другой.

Сделано это для снижения износа рабочего инструмента. Неподвижная проволока быстро придет в негодность. Это усложняет конструкцию механизмом движения проволоки, который необходимо установить на станину для удобной обработки деталей. В то же время дает станку дополнительный функционал. При вырезании сложных элементов оптимальным вариантом будет поставить ЧПУ, но, как сказано выше, это обусловлено некоторыми сложностями.

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»