Органическая производственная пыль. Виды пыли. Классификация производственной пыли

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

Производственная пыль - одна из наиболее распространенных профессиональных вредностей - может вызывать пылевые заболевания, занимающие первое место среди профессиональных заболеваний. Производственная пыль представляет собой мелкораздробленные твердые частицы, находящиеся в воздухе рабочих помещений во взвешенном состоянии, т.е. в виде аэрозоля. Образование пыли и ее выделение в воздух рабочей зоны имеет место во многих отраслях промышленности: в горнорудной и угольной промышленности - при бурении породы, взрывных работах, сортировке, измельчении; в машиностроении - при очистке, обрубке литья, шлифовке, полировке изделий; металлургии и химии - при выполнении пирометаллургических процессов выплавки металлов и плавки различных минеральных материалов; на текстильных предприятиях - при очистке и сортировке шерсти, хлопка, при прядении, ткачестве и др. Кроме того, пыли образуются при горении топлива и при других различных химических процессах.

В зависимости от происхождения принято различать органические, неорганические и смешанные пыли. К органическим относятся растительная и животная пыль, а также пыль некоторых синтетических веществ. К неорганическим относятся металлическая и минеральная (кварц, асбест, цемент и др.) пыли. Основным компонентом минеральной пыли является диоксид кремния (Si0 2).

Однако такая классификация пыли недостаточна для ее оценки с точки зрения гигиены. Для этой цели пользуются классификацией по ее дисперсности и способу образования, соответственно различая аэрозоли дезинтеграции и аэрозоли конденсации. Аэрозоли дезинтеграции образуются при дроблении какого-либо твердого вещества, например в дробилках, мельницах, при бурении и т.п. Они в значительной степени состоят из пылинок больших размеров неправильной формы (в виде обломков), хотя в их состав входят и микроскопические частицы.

Аэрозоли конденсации образуются из паров металлов и неметаллов, которые при конденсации превращаются в твердые частицы, размеры которых значительно меньше, чем при образовании аэрозолей дезинтеграции.

По дисперсности различают видимую пыль (размеры пылевых частиц более 10 мкм), микроскопическую (размеры от 0,25 до 10 мкм), ультрамикроскопическую (размеры менее 0,25 мкм). Наибольшую опасность представляют пыли с частицами размером до 5 мкм, которые задерживаются в легких, проникая в альвеолы, и частично или полностью растворяются в лимфе. Частицы большего размера задерживаются в верхних дыхательных путях и выводятся наружу при выдохе или откашливании.

При оценке влияния пыли на организм определенное значение имеет форма частиц, их твердость, острота, волокнистость. Форма пылинок, например, влияет на их поведение в воздухе, ускоряя (округлая форма) или замедляя (волокнистая, пластинчатая форма) оседание. Имеет значение также удельная поверхность (см 2 Д) пыли, поскольку ее химическая активность в отношении организма зависит от общей площади поверхности.

Обожженные продукты (керамзит), вспученные (перлит и вермикулит), имеющие поверхность в 1,25-3 раза большую, чем сырье, идущее на их изготовление (при незначительном увеличении содержания кремнезема), обладают более выраженным фиброгенным действием на легочную ткань. Токсическое действие пыли в большей степени зависит от химической природы пыли и ее концентрации в воздухе рабочей зоны. Растворимые пыли, задерживаясь в дыхательном тракте, всасываются, попадают в кровь, и последующее их влияние на организм зависит от их химического состава. Например, сахарная пыль безвредна, а пыль таких металлов, как свинец, цинк, оказывает токсическое влияние на организм. Химический состав пыли, во многом определяющий характер и степень профессиональной пылевой патологии, зависит от вида и состава обрабатываемого материала, способа и технологии его обработки.

Очень важно определение в пыли диоксида кремния, находящегося в связи (комплексе) с различными соединениями. В ряде случаев даже незначительная примесь какого-либо химического агрессивного соединения изменяет направленность и силу действия пыли: так, обнаруженный в отечественных цементах шестивалентный хром в количестве до 0,001% обладает выраженным аллергическим действием.

От электрических свойств пылевых частиц в ряде случаев зависит процесс осаждения, а следовательно, и время нахождения их в воздухе. При разноименном заряде пылинки притягиваются друг к другу и быстро оседают. При одинаковом заряде пылинки, отталкиваясь друг от друга, могут долго находиться в воздухе.

Пыль может быть носителем микробов, клещей, яиц гельминтов и др.

Под влиянием пыли могут развиваться как специфические, так и неспецифические заболевания. Специфическая патология может проявляться в виде пневмокониозов - фиброза легочной ткани, о которых упоминалось в гл. 2. По характеру пыли пневмокониозы классифицируют следующим образом: антракоз легких, развивающийся при вдыхании угольной пыли; сидероз - при вдыхании металлической (обычно окиси железа) пыли; силикоз - при вдыхании пыли, содержащей свободный диоксид кремния; силикатоз - при вдыхании пыли солей кремниевой кислоты (наиболее часто встречающиеся виды силикатоза - асбестоз, цементоз, талькоз и др.); ме- таллокониоз (бериллиоз и др.), карбокониоз (анитракоз и др.), пнев- мокониоз от смешанной пыли, от органической пыли (биссиниоз и др.). Существуют и другие виды пневмокониозов - хлопковый, зерновой и т.п.

При пневмокониозе пылевой пигмент может заноситься в другие органы, изменяя их функции.

Таким образом, пневмокониоз можно считать заболеванием не только легких, но и всего организма. Больные, как правило, жалуются на одышку, прогрессирующую по мере развития болезни, кашель и боли в груди. Изменяются форма грудной клетки и характер дыхания. Самый распространенный вид пневмокониоза - силикоз, который часто осложняется туберкулезом.

Из неспецифических заболеваний, вызываемых воздействием производственной пыли, можно назвать пневмонию - воспаление легких (пыль марганца, томасшлаковая пыль), пылевой бронхит - воспаление слизистой оболочки бронхов, бронхиальную астму - одышка, удушье (древесная, мучная пыль), поражения слизистой носа, носоглотки (пыль цемента, хрома и др.), конъюнктивиты, поражения кожи - бородавки, угри, изъязвления, экземы, дерматиты.

Некоторые виды пыли (асбест, хром) представляют канцерогенную опасность. Систематическая работа в условиях воздействия пыли вызывает повышенную заболеваемость рабочих с временной нетрудоспособностью, что связано со снижением защитных иммунобиологических функций организма.

Действия пыли могут усугублять тяжелый физический труд, охлаждение тела человека, некоторые токсические газы, что приводит к более быстрому возникновению и усилению тяжести пневмокониоза.

В Российской Федерации установлены предельно допустимые концентрации (ПДК) пыли, соблюдение которых при работе длительностью не более 8 ч в день в течение всего трудового стажа не приводят к заболеваниям или отклонениям в состоянии здоровья у работающих. Ответственность за поддержание условий, препятствующих превышению ПДК пыли в воздухе, возложена на работодателя.

В табл. 3.2 приведен перечень ПДК в воздухе для аэрозолей фиброгенного действия.

Борьба с производственной пылью представляет одну из важнейших задач гигиены труда, так как воздействию пыли может подвергаться большое число работающих. Пыль является основной производственной вредностью в горнодобывающей промышленности (добыча угля, металлических руд и др.), в производстве строительных материалов (огнеупорные изделия, кирпич, цемент), фарфоро-фаянсовый, мукомольной промышленности, чугуно-медно-сталелитейных и других цехах металлургической и машиностроительной промышленности, в подготовительных и прядильных цехах текстильной промышленности, сельском хозяйстве и многих других отраслях народного хозяйства.

Вдыхание пыли может привести к специфическим заболеваниям (пневмокониозу), способствовать возникновению и распространению таких заболеваний, как ларингит, трахеит, бронхит, пневмония, туберкулез легких, заболевания кожи.

Борьба с производственной пылью является не только гигиенической, но и экономической задачей. Некоторые виды пыли (цементная, сахарная, мучная, содовая и др.) представляют ценность как продукт производства, и потеря его наносит экономический ущерб. Пыль способствует быстрому износу производственного оборудования, может служить причиной брака (точное приборостроение, переработка фторопластов). При определенных условиях возможны взрывы пыли.

Классификация производственной пыли

Пыль - понятие, характеризующее физическое состояние вещества, а именно раздробленность его на мельчайшие частицы. Взвешенные в воздухе твердые частицы представляют собой дисперсную систему, в которой дисперсной фазой являются твердые частицы, а дисперсионной средой - воздух. Дисперсную систему взвешенных твердых частиц в воздухе, т. е. пыль, называют аэрозолем. Если в воздухе взвешены однородные по своим физико-химическим свойствам частицы, систему называют моногенной, или однофазной; если пылевые частицы, взвешенные в воздухе, по своим физико-химическим свойствам различны, система носит название гетерогенной, или многофазной.

С гигиенической точки зрения аэрозоли, для которых характерно токсическое действие вследствие их химических свойств (например, аэрозоли свинца, окиси цинка, мышьяка и многие другие), относят к промышленным ядам.

По характеру веществ, из которых пыль образовалась, известна следующая ее классификация:
I) Органическая пыль:
а) растительная пыль (древесная, хлопковая и др.);
б) животная (шерстяная, костяная и др.);
в) искусственная органическая пыль (пластмассовая и др.).

II) Неорганическая пыль:
а) минеральная (кварцевая, силикатная и др.);
б) металлическая (железная, алюминиевая и др.).

III) Смешанная пыль (пыль при шлифовке металла, при зачистке литья и др.).

Однако такая классификация пыли недостаточна для ее гигиенической оценки. Для этой цели пользуются классификацией пыли по ее дисперсности и способу образования и соответственно различают аэрозоли дезинтеграции и аэрозоли конденсации.

Аэрозоли дезинтеграции образуются при добавлении какого-либо твердого вещества, например в дезинтеграторах, дробилках, мельницах, при бурении и других процессах. При этом чем тверже Тело, тем меньше размеры образующихся частиц. Аэрозоли дезинтеграции в значительной мере состоят из пылинок больших размеров, хотя в их состав входят также ультрамикроскопические частицы.

Аэрозоли конденсации образуются из паров металлов, металлоидов и их соединений, которые при охлаждении превращаются в твердые частицы. Например, в воздухе конденсируются пары цинка и алюминия при их плавлении, пары металлов при электросварке. При этом размеры пылевых частиц значительно меньше, чем при образовании аэрозолей дезинтеграции.

Частицы аэрозолей дезинтеграции и конденсации различаются также тем, что первые имеют всегда неправильную форму, представляются в виде обломков, а вторые - вид рыхлых агрегатов, состоящих из отдельных частиц правильной кристаллической или шарообразной формы.

Советский исследователь Н. А. Фукс выделяет две группы аэрозолей по их дисперсности:
а) пыль - к ней относятся все твердые частицы, образующиеся при дезинтеграции, независимо от их размеров и включающие пылинки субмикроскопического размера;
б) дымы - к ним относятся конденсационные аэрозоли с твердой дисперсной фазой. К дымам можно отнести также аэрозоли, образующиеся при неполном сгорании топлива, дым хлористого аммония и др.

Производственная пыль и причины ее образования в условиях строительства. Оценка вредности пыли в зависимости от дисперсности, химического состава и других свойств. Нормирование запыленности на рабочем месте (ГОСТ 12.1.005-88). Определение концентрации пыли в рабочей зоне. Методы очистки воздуха от пыли. Методы снижения запыленности. Общие и индивидуальные средства защиты от пыли

Производственная пыль (аэрозоль) - это совокупность мельчайших твердых частиц, образующихся в процессе производства, находящихся во взвешенном состоянии в воздухе рабочей зоны и оказывающих неблагоприятное воздействие на организм работающих.

По происхождению пыль подразделяется на: органическую (растительную, животную, полимерную);

  • - неорганическую (минеральную, металлическую);
  • - смешанную.

По месту образования пыль делится на:

  • - аэрозоли дезинтеграции, образующиеся при размоле и обработке твердых тел;
  • - аэрозоли конденсации, получающиеся в результате конденсации паров металлов и неметаллов (шлаки).

По дисперсности пыль делят:

  • - на видимую (частицы более 10 мкм);
  • - микроскопическую (от 0,25 до 10 мкм);
  • - ультрамикроскопическую (менее 0,25 мкм).

Производственная пыль состоит из частиц твердого вещества, взвешенного в воздухе. Промышленная пыль, характер которой зависит от ее состава, наиболее часто бывает причиной возникновения заболеваний. Чем мельче пылевые частицы, тем дольше они находятся во взвешенном состоянии, проникая в мельчайшие поры кожи, бронхи и альвеолы.

Пылеобразование, процессе строительства, происходит при дроблении, размоле, перетирке, шлифовки, сверлении, фасовке, упаковки, переработки, складской обработке грузов и т.д.

Гигиеническая оценка загрязнения воздуха пылью включает определение:

  • - химического состава;
  • - дисперсности пыли.
  • 1. Определение химического состава пыли в воздухе. Основным методом определения концентрации пыли в воздухе является гравиметрический (весовой), что основано на протягивании исследуемой пробы воздуха через фильтры, на которых задерживаются пылевые частицы, вследствие чего их вес увеличивается. По разнице массы фильтра до и после взятия пробы воздуха судят о количестве пылевых частиц в воздухе. На сегодняшний день используются аналитические фильтры аэрозольные (АФА), изготовленные из ткани ФПП (фильтр перхлорвиниловый Петрянова).

Анализ проводят следующим образом:

  • 1) Вынимают из кассеты за выступ комплект аналитического фильтра;
  • 2) Вскрывают пакетик и разворачивают защитные кольца;
  • 3) С помощью пинцета складывают фильтр вчетверо и кладут в центр чашечки аналитических весов, следя за тем, чтобы он не свешивался через край чашечки. Взвешивают фильтр с точностью до 0,1 мг;
  • 4) Взвешенный фильтр, осторожно расправляют за опрессованные края пинцетом и помещают в защитные кольца;
  • 5) Укладывают комплект фильтра в пакетик и затем в кассету.
  • 6) На месте отбора пробы вынимают комплект взвешенного фильтра из кассеты и пакетика и вставляют в патрон, который присоединяют к электроаспиратору.
  • 7) Включают установку и производят отбор пробы аэрозолей в течение определенного времени. С помощью регулятора скорости протягивания воздуха, вставленного на реометре аспиратора устанавливают скорость движения воздуха в пределах 15 - 20 л/мин. Длительность взятия пробы воздуха зависит от запыленности воздуха (как правило, не более 30 мин). Скорость отбора пробы не должна превышать 100 л/мин;
  • 8) После отбора пробы вынимают из патрона фильтр за выступ, сворачивают вдвое, осадком в середину и помещают в пакетик;
  • 9) Переносят фильтр к месту взвешивания;
  • 10)Повторное взвешивание осуществляют, как описано выше, предварительно выдержав фильтр при исходных условиях температуры и влажности воздуха в течение 10 - 15 мин. Взвешивание фильтра до и после отбора пробы необходимо проводить при одинаковых условиях (температура, влажность). В случае попадания во время отбора пробы на фильтр влаги перед вторичным взвешиванием необходимо выдержать фильтр в эксикаторес серной кислотой не менее 2 часов.
  • 2. Определение дисперсности пыли. Для определения дисперсности пыли проводят микроскопическое исследование пылевого препарата. С этой целью фильтр, который остался после количественного определения пыли, кладут запыленной стороной вниз на предметное стекло, которое потом помещают в стеклянную посуду с подогретым ацетоном. Ткань фильтра быстро становится прозрачной и тонким прозрачным шаром фиксируется на поверхности стекла. В том случае, когда пылевые частицы растворяются в органических растворителях, пылевой препарат готовят путем осаждения пылевых частиц в природных условиях на горизонтально или вертикально помещенное стекло, смазанное каким-либо клейким веществом (глицерин, вазелин).

Полученный пылевой препарат изучают под микроскопом при большом увеличении, либо с имерсией с помощью окуляра микрометра, вставленного в окуляр микроскопа. Окуляр микрометр представляет собой линейку, нанесенную на стекло округлой формы, с делениями от 0 до 50. Предварительно определяют цену деления линейки с помощью объектива микрометра, цена деления которого составляет 10 мкм. Для этого совмещают линии двух линеек: окуляра микрометра и объектива микрометра, подсчитывают количество делений окуляра микрометра, которые укладываются до момента совмещения с линиями объектива микрометра и определяют цену одного деления.

Нормирование запыленности в рабочей зоне определяется ГОСТ-ом 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей среды».

Среднесменную концентрацию вредных веществ определяют по формуле:

Где - среднемесячная концетрация, мг/м 3 ;

  • - средние арифметические величины отдельных измеренийконцентраций вредного вещества на отдельных стадиях (операциях) технологического процесса, мг/м3;
  • - продолжительность отдельных стадий (операций) технологического процесса, мин.

В настоящее время методы очистки приточного воздуха классифицируют на следующие группы:

  • - пылевые фильтры;
  • - адсорбционные фильтры;
  • - фотокаталитические фильтры;
  • - ионизирующие очистители (электрофильтры).

Пылевые фильтры - специальная ткань из различных волокон, способных задерживать частицы пыли размером от 0,3 микрон и выше. Принцип их работы следующий: воздух вентилятором продувается через ткань, где происходит улавливание частиц пыли. Максимальная степень очистки воздуха в них при соблюдении правил технической эксплуатации достигает 99,9 %. В качестве фильтровальных материалов применяют ткани из природных волокон (хлопчатобумажные и шерстяные), ткани из синтетических волокон (нитроновые, лавсановые, полипропиленовые и др.), а также стеклоткани. К достоинствам данного типа фильтров можно отнести: простоту использования и невысокую стоимость, а к недостаткам: очистка только от пыли и высокие эксплуатационные расходы (замена фильтрующих материалов).

В адсорбционных фильтрах происходит фильтрация воздуха через неподвижный слой твердого поглотителя - адсорбента. В качестве адсорбента наиболее часто применяют гранулы активированного угля. Активированный уголь поглощает практически все токсичные примеси воздуха с молекулярной массой более 40 атомных единиц - табачный дым, дым лесных пожаров, пыльцу растений. Однако уголь практически не адсорбирует легкие соединения - окись углерода, окислы азота, формальдегид, которые являются основными загрязнителями городского воздуха. Недостатками адсорбционных фильтров являются: высокие эксплуатационные расходы, ограниченная полезная емкость, и при несвоевременной замене адсорбента фильтры становятся источником токсичных органических веществ и болезнетворных бактерий.

В фотокаталитических фильтрах на поверхности катализатора под действием ультрафиолетового излучения происходит окисление всех вредных органических веществ (запахи, токсины, вирусы и бактерии) до безвредных компонентов. Данные типы фильтров обычно предусматриваются в качестве финишной ступени очистки воздуха: после пылевых и угольных фильтров. К недостаткам данного типа фильтров можно отнести: высокую стоимость, необходимость подвода электроэнергии.

В электрофильтрах используется метод улавливания пыли в электрическом поле. Частицы пыли сначала получают заряд от ионов газа, которые образуются в электрическом поле высокого напряжения, а затем движутся к заземленному улавливающему электроду. Электрофильтры хорошо очищают воздух от пыли и копоти, но не улавливают окись углерода, окислы азота, формальдегид и другие вредные органические соединения. Кроме того, в процессе работы электрофильтры сами генерируют вредные окислы азота и озон, который в 5 раз токсичнее, чем угарный газ.

Технологические мероприятия снижения запыленности.

Устранение образования пыли на рабочих местах путем изменения технологии производства - основной путь профилактики пылевых заболеваний. Внедрение непрерывных технологий, автоматизация и механизация производственных процессов, устраняющих ручной труд, дистанционное управление значительно облегчают и улучшают условия труда. Широкое применение автоматических видов сварки с дистанционным управлением, роботов-манипуляторов на операциях загрузки, пересыпки, упаковки сыпучих материалов уменьшает контакт рабочих с источниками пылевыделения.

Для эффективной борьбы с пылью в технологическом процессе вместо порошкообразных продуктов используют брикеты, гранулы, пасты, растворы и т. д.; заменяют токсические вещества на нетоксические; переходят с твердого топлива на газообразное; широко применяют высокочастотный электронагрев, значительно снижающий загрязнение производственной среды дымами и топочными газами.

Предотвращению запыленности воздуха способствуют следующие мероприятия: замена сухих процессов мокрыми; герметизация оборудования, мест размола, транспортировки; выделение агрегатов, запыляющих рабочую зону, в изолированные помещения с устройством дистанционного управления.

Санитарно-технические мероприятия мероприятия снижения запыленности.

Мероприятия санитарно-технического характера играют большую роль в предупреждении заболеваний, например, укрытие пылящего оборудования с отсосом воздуха из-под укрытия. Герметизация и укрытие оборудования сплошными пыленепроницаемыми кожухами с эффективной аспирацией - это рациональное средство предупреждения пылевыделения в воздух рабочей зоны.

Удаление пыли должно происходить непосредственно из мест пылеобразования. Перед выбросом в атмосферу запыленный воздух очищается.

В ряде случаев вентиляцию создают в комплексе с технологическими мероприятиями.

Индивидуальные средства защиты.

Если мероприятия по снижению концентрации пыли не приводят к уменьшению пыли в рабочей зоне до допустимых пределов, применяют индивидуальные средства защиты.

К индивидуальным средствам защиты относятся противопылевые респираторы, защитные очки, специальная противопылевая одежда. То или иное средство защиты органов дыхания выбирают в зависимости от вида вредных веществ, их концентрации. Органы дыхания защищают фильтрующими и изолирующими приборами, например, респиратором типа «Лепесток». При контакте с порошкообразными материалами, неблагоприятно воздействующими на кожу, используют защитные пасты и мази.

Для защиты глаз применяют закрытые или открытые очки. Очки закрытого типа с прочными безосколочными стеклами используют при механической обработке металлов. В процессах, сопровождающихся образованием мелких и твердых частиц и пыли, брызг металла, рекомендуют очки закрытого типа с боковинками или маски с экраном.

Из спецодежды применяются пылезащитные комбинезоны: женский и мужской со шлемами для выполнения работ, связанных с большим образованием нетоксической пыли, костюмы - мужской и женский со шлемами, а также скафандр автономный для защиты от пыли, газов и низкой температуры.

Пыль – понятие, характеризующее физическое состояние вещества, а именно раздробленность его на мельчайшие частицы. Взвешенные в воздухе твердые частицы представляют собой дисперсную систему, в которой дисперсной фазой являются твердые частицы, а дисперсионной средой – воздух. Дисперсную систему взвешенных твердых частиц в воздухе, т. е. пыль, называют аэрозолем . Если в воздухе взвешены однородные по своим физико-химическим свойствам частицы, систему называют моногенной, или однофазной; если пылевые частицы, взвешенные в воздухе различны по своим физико-химическим свойствам, система носит название гетерогенной, или многофазной.

С гигиенической точки зрения аэрозоли, для которых характерно токсическое действие вследствие их химических свойств (например, аэрозоли свинца, окиси цинка, мышьяка и многие другие), относят к промышленным ядам.

По характеру веществ, из которых пыль образовалась, известна следующая классификация:

    Органическая пыль:

    1. растительная пыль (древесная, хлопковая и др.);

      животная (шерстяная, костяная и др.);

      искусственная органическая (пластмассовая и др.).

    Неорганическая пыль:

    1. минеральная (кварцевая, силикатная и др.);

      металлическая (железная, алюминиевая и др.);

    Смешанная пыль (пыль при шлифовке металла, при зачистке литья и др.).

Однако такая классификация пыли недостаточна для ее гигиенической оценки. Для этой цели пользуются классификацией пыли по ее дисперсности и способу образования и соответственно различают аэрозоли дезинтеграции и аэрозоли конденсации.

Аэрозоли дезинтеграции образуются при добавлении какого-либо твердого вещества, например в дезинтеграторах, дробилках, мельницах, при бурении и других процессах. При этом чем тверже тело, тем меньше размеры образующихся частиц. Аэрозоли дезинтеграции в значительной мере состоят из пылинок больших размеров, хотя в их состав входят также ультрамикроскопические частицы.

Аэрозоли конденсации образуются из паров металлов, металлоидов и их соединений, которые при охлаждении превращаются твердые частицы. Например, в воздухе конденсируются пары цинка и алюминия при их плавлении, пары металлов при электросварке. При этом размеры пылевых частиц значительно меньше, чем при образовании аэрозолей дезинтеграции.

Частицы аэрозолей дезинтеграции и конденсации различаются также тем, что первые имеют всегда неправильную форму, представляются в виде обломков, а вторые – вид рыхлых агрегатов, состоящих из отдельных частиц правильной кристаллической или шарообразной формы.

Исследователь Н. А. Фукс выделяет две группы аэрозолей по их дисперсности:

    Пыль – к ней относятся все твердые частицы, образующиеся при дезинтеграции, независимо от их размеров и включающие пылинки субмикроскопического размера;

    Дымы – к ним относятся конденсационные аэрозоли с твердой дисперсной фазой. К дымам можно также отнести аэрозоли, образующиеся при неполном сгорании топлива, дым хлористого аммония и др. [Аллергия. Здоровье. 2003 г, №5, с. 72 - 79]

1.2. Физические и химические свойства пыли и их гигиеническая оценка

Гигиеническое значение промышленных аэрозолей с твердой фазой обусловливается их физическими и химическими свойствами, из которых наиболее важными являются дисперсность, форма частиц, их консистенция, электрический заряд, растворимость, химический состав. С некоторыми из указанных свойств связана взрывчатость пыли.

Для гигиенической оценки пыли важным признаком является степень дисперсности ее, или размеры пылевых частиц, так как с этим связана как длительность пребывания взвешенной пылевой частицы в воздушной среде, так и глубина проникновения в дыхательные пути, патогенность и физико-химическая активность, электрозаряд частиц и другие свойства.

Дисперсность и поведение пылевых частиц в воздухе . Микроскопические частицы размером от 200 до 0,1 мк, как и все прочие тела подчиняются закону тяготения. Но вследствие относительно большой поверхности на единицу массы они испытывают большое сопротивление воздуха и поэтому не оседают с постоянной скоростью по закону Стокса. В начале падения сила тяжести уравновешивает сопротивление воздуха, дальнейшее увеличение скорости падения вследствие этого прекращается и микроскопическая частица оседает с постоянной незначительной скоростью, измеряемой сантиметрами или миллиметрами в час. Сопротивление воздуха при движении в нем частицы изменяется в зависимости от ее размеров и формы, скорости ее оседания и подвижности воздуха.

Скорость падения кварцевой частицы в неподвижном воздухе в зависимости от размеров показана в табл. 1. Как видно из таблицы 1, в неподвижном воздухе кварцевые частицы диаметром 10 мк оседают медленно, а частицы менее 0,1 мк практически не оседают и находятся в постоянном броуновском движении. Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути. Некоторые изменения скорости оседания пылевых частиц возникают в связи с процессом флокуляции. Это имеет значение в основном для аэрозолей конденсации, которые даже в неподвижном воздухе благодаря энергичному броуновскому движению часто сталкиваются друг с другом, агрегируются и виде хлопьев выпадают из воздуха.

Таблица 1.1.

Скорость оседания кварцевой частицы

в неподвижном воздухе

Диаметр пылевой частицы, мк

Скорость падения

в секунду, мм

в час, м и см

Аэрозоли дезинтеграции не поддаются агрегированию главным образом вследствие относительно больших размеров частиц; более того, пылевые частицы в них могут приобретать меньшие размеры.

Сказанное иллюстрируется рис. 1, а иб : аэрозоли конденсации окиси магния минимальных размеров с течением времени превращаются в хлопья, а аэрозоли дезинтеграции мела в виде хлопьев – в мельчайшие пылевые частицы.

Рис. 1.1. Изменение размера пылевых частиц

Влияние движения воздуха незначительно. Увлажнение воздуха оказывает эффективное влияние на флокуляцию лишь в том случае, если оно интенсивное.

Исследования показали, что аэрозоли дезинтеграции малого диаметра могут флокулироваться при наличии в воздухе водяных аэрозолей размером 0,55 – 0,4 мк в количестве, значительно превышающем количество твердых аэрозолей.

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования.

Свежеполученные аэрозоли конденсации (дымы) имеют размеры частиц меньше 1 мк. Величина частиц аэрозолей дезинтеграции (пыль) зависит от вещества, из которого они получены, интенсивности дезинтеграции и возраста аэрозолей.

Чем тверже вещество, чем интенсивнее дезинтеграция и чем больше возраст аэрозолей, тем больше пыли и тем выше степень дисперсности ее частиц (табл. 2).

Таблица 1.2.

Степень дисперсности пылевых частиц при различных процессах обработки

Процесс

Вид пыли

Соотношение размеров пылевых частиц

до 2 мк

2 - 5 мк

5 - 10 мк

выше 10 мк

Обточка древесины

Древесная

Обдирка металла

Металлическая и минеральная

Заточка металла


Дисперсность и задержка пыли в органах дыхания . Задержка пылевых частиц в дыхательных путях зависит от их дисперсности (табл. 3). Общий процент числа задержанных в организме пылевых частиц тем выше, чем больше их размер. Это особенно заметно в отношении задержки пыли в верхних дыхательных путях. В альвеолах наиболее высок процент задержки пылевых частиц размером около 1 мк. Однако в абсолютных величинах выше количество задержанных в альвеолах частиц, размеры которых меньше 1 мк, так как они преобладают среди взвешенных в воздухе частиц.

Некоторое значение для задержки пыли в организме имеет тип дыхания. По данным Е. А. Вигдорчик, частицы диаметром менее 1 мк меньше задерживаются при дыхании через нос и больше при дыхании через рот; фракции в 1,3 мк задерживаются больше при носовом дыхании, а фракции в 3 мк и больше задерживаются примерно одинаково при дыхании через рот и нос. [«Гигиена труда» Навроцкий В. К., 1984 г. с. 140 - 148]

Таблица 1.3.

Задержка в организме пылевых частиц каолина в зависимости от размеров.

Диаметр частиц, мк

Общая задержка, %

Задержка в верхних дыхательных путях, %

Задержка в альвеолах, %

Таблица 1.4.

Размеры частиц, обнаруженные в легких людей, умерших от силикоза

Диаметр частиц, мк

В первом случае, %

Во втором случае,


Такие же примерно соотношения размеров пылевых частиц, найденных в легких умерших, работавших на пыльных производствах, но не болевших силикозом. На основании данных о поведении пыли в воздухе и ее задержке в органах дыхания в связи с дисперсностью можно сделать вывод, что гигиеническое значение практически имеют пылевые частицы размером 5 мк и меньше. В опытах с введением в легкие интратрахеально одинакового по весу количества кварцевой пыли разной дисперсности показано, что наибольшей фиброгенной активностью обладают пылевые частицы размером 1 – 2 мк. Это объясняется тем, что частицы значительных размеров попадают в легкие в небольшом количестве и задерживаются в альвеолах. Частицы же размером менее 1 мк легко транспортируются из альвеол пылевыми клетками в лимфатические узлы и, не задерживаясь в них, удаляются из организма. Частицы величиной 1 – 2 мк легко транспортируются по лимфатическим путям и долго задерживаются в лимфатических узлах. На основании этих опытов, по-видимому, можно сделать вывод, что так называемая ультрамикроскопическая пыль (размером 0,1 мк и меньше) малопатогенна.

Гарднер, например, не мог получить у животных фиброза легких при введении пыли с размером частиц 20 Å (0,002 мк). Приведенные данные о фиброгенной активности пыли в связи с ее дисперсностью следует иметь в виду при гигиенической оценке пылевого фактора на производстве.

Форма и консистенция пылевых частиц .Как уже указывалось выше, аэрозоли дезинтеграции имеют неправильную форму и представляют по существу обломки в виде пластинок, глыбок, многогранников, вытянутых волокон с острыми зазубренными, иногда сглаженными краями (рис. 2). [«Наука и жизнь», 1996 г. №9,с. 59 - 65]

Рис. 1.2. Электронная микрофотограмма пыли. А – аморфная пыль кремния; Б – кварца; В – тридимита; Г – кристаболита.

Аэрозоли конденсации представляют собой чаще всего рыхлые агрегаты, состоящие из кристаллов или частиц шарообразной формы. От формы пылевой частиц зависит скорость ее оседания. Частица неправильной формы оседает медленно, так как она падает всегда в положении наибольшей своей поверхности, встречающей наибольшее сопротивление воздуха.

О роли формы пылевой частицы в патогенезе пылевых заболеваний не достаточной ясности. Старое представление о том, что острые края пылевой частицы травмируют легочную ткань и приносят больше вреда, не доказано. Такое представление можно было бы допустить, если бы пылевая частица имела значительную массу.

Нет также основания придавать какое-либо значение консистенции пылевой частиц. Об этом свидетельствует известный факт, что пыль корунда – вещества, значительно более твердого, чем многие минералы (кроме алмаза), не является агрессивной в биологическом отношении.

Электрические свойства пыли . Пылевые частицы, взвешенные в воздухе, несут как положительный, так и отрицательный заряд независимо от химических свойств первичного вещества.

Как видно из таблицы 5, почти все пылевые частицы имеют заряд, причем количество частиц с отрицательным и положительным зарядом почти одинаково. Обращает на себя внимание устойчивость заряженных частиц. Так, в забое до начала бурения, где работали минимум 8 часов, общая заряженность очень высока и преобладают отрицательные заряды. Какие же данные получены через 3 часа после взрывных работ. Это, возможно, указывает на меньшую устойчивость положительных частиц. Пылевые частицы больших размеров могут иметь несколько элементарных зарядов, а малые – обычно 1 элементарный заряд.

Биологическое и гигиеническое значение электрозаряженности пыли почти не изучены. Имеются указания на то, что процент задержки в дыхательных путях электрозаряженной пыли в 2 – 3 раза больше, чем нейтральной. Показано, что биполярно электрозаряженная пыль более фиброгенна, чем нейтральная. По-видимому, характер заряда может иметь значение для фагоцитоза пыли. Возможно также, что знак заряда играет определенную роль при осаждении пыли из воздуха распыленной водой, поскольку водяные аэрозоли также несут на себе электрозаряд.

Химический состав пыли. Для гигиенической оценки пыли важно знать ее химический состав, от которого зависит биологическая активность, в частности фиброгенное, аллергенное, токсическое и раздражающее действие. Фиброгенность пыли зависит главным образом от содержания в ней свободной двуокиси кремния (SiO 2).

Пыль, образующаяся в производстве огнеупорного кирпича, содержит 98% свободной двуокиси кремния, формовочная земля в чугунолитейных цехах – 60 – 80 %, железная руда – до 30 %, вмещающие ее породы – кварцит – содержат до 70 %; почти все вмещающие породы угольных пластов Донбасса содержат больше 10 % свободной двуокиси кремния. Чем больше содержание в пыли свободной двуокиси кремния, тем более она агрессивна. Ряд видов пыли обладает аллергенными свойствами, вызывая такие заболевания, как носовая и бронхиальная астма. К аллергенам относятся, например, пыль ипекакуаны, канифоли, кожи, льна, муки, перламутра, пихты, рисовой муки, соломы, сосны, сухих спор хлебной головни, хлопка, шерсти, шелка, хрома. Общеизвестно, что к аллергенам существует индивидуальная чувствительность, поэтому не все соприкасающиеся с указанными видами пыли заболевают носовой или бронхиальной астмой. [Здоровье, 2003 – 2004, с. 73 - 76]

Таблица 1.5.

Электрозаряженность пылевых частиц в производственных условиях

Производственный процесс

Количество частиц

Всего заряженных

Положительно заряженных

Отрицательно заряженных

нейтральных

До начала бурения

Сухое бурение по кварцитам

Мокрое бурение по кварцитам

Бурение с сухим пылеулавливателем

Через три часа после взрыва

Пескоструйная очистка отливок

Измельчение гипса в мельнице

Измельчение гипса в дробилках

Транспортировка измельченного гипса элеватором


Растворимость пыли. Растворимость пыли в воде и тканевых жидкостях может иметь положительное и отрицательное значения. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, хорошая растворимость такой пыли является фактором благоприятным, способствующим удалению ее из легких. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Удельная поверхность пыли и физико-химическая активность. Дисперсность пыли в большой мере влияет на ее физико-химическую активность. Объясняется это значительным увеличением поверхности диспергированного тела. В этом легко убедиться на следующем примере. Раздробление 1 см 3 твердого тела до частиц размером 0,1 мк увеличивает общую поверхность с 6 до 600000 см 2 , т. е. в 100000 раз. Такое увеличение поверхности резко повышает адсорбционную способность вещества к газовым молекулам. Хорошей иллюстрацией может служить пыль доменного газа, сорбирующая окись углерода. В спокойном состоянии сорбированная окись углерода из пыли не выделяется; при перелопачивании же она десорбируется в количествах, способных вызвать острое отравление.

Увеличение удельной поверхности диспергированных веществ связано с повышением их химической активности. В связи с этим пыль приобретает свойства взрывчатости. Активная сорбция кислорода пылевыми частицами делает их легко воспламеняющимися при наличии открытого огня. Взрывчатыми свойствами может обладать любая пыль, но особенно взрывоопасны органические виды пыли. Практике хорошо известны взрывы каменноугольной, пробковой, сахарной, мучной пыли. Опасность взрыва зависит от концентрации пыли, дисперсности ее, содержания в ней летучих веществ, зольности (т. е. наличия неорганических веществ), влажности. Особенно взрывоопасна каменноугольная пыль, содержащая значительное количество органических летучих веществ.

Пыль и микрофлора. Издавна известна связь запыленности воздуха с заболеванием туберкулезом легких. Являются ли в этом случае пылевые частицы переносчиками инфекций или предшествующее действие пыли на легочную ткань благоприятствует развитию инфекции, попавшей другим путем, остается неясным. Известны случаи заболевания легочной формой сибирской язвы среди рабочих по сортировке тряпок и шерсти. Зерновая пыль может содержать споры различных грибов, в том числе и лучистого гриба, являющегося возбудителем актиномикоза. Воздух рабочих помещений нередко загрязняется различного вида микробами. В сортировочно-трепальном и чесальном цехах хлопкопрядильной ткацкой фабрики в 1 м 3 воздуха находили от 25400 до 54000 бактерий, причем бактериальная загрязненность воздуха находилась в прямой зависимости от концентрации пыли в воздухе и от сорта хлопка. В воздухе помещений обувных фабрик обнаруживали от 22 до 44 колоний в кубическом футе, причем бактериальная загрязненность находилась в прямой зависимости от числа людей в помещении и кубатуры на одного человека. Интересен тот факт, что, по-видимому, некоторые виды пыли могут служить питательной средой для бактерий. Обнаружено, например, огромное количество микробов в мучной пыли, взятой на мельнице (B. Subtilis, стафилококк, диплококк, стрептококк, кишечная палочка и др.). Пыль может быть носителем не только бактерий, но и клещей и яиц глистов. [Техника молодежи. 1996, №2, с. 20-21]

Производственная пыль является одним из наи­более распространенных неблагоприятных факторов. профессиональной вредности. Она встречается в по­давляющем числе производств, где самые разнооб­разные технологические процессы и операции сопро­вождаются образованием и выделением пыли в зону влияния на большие контингента работающих.

В горнорудной промышленности значительное количество пыли возникает во время бурения и при взрывных работах. В угольной - при работе комбай­нов и породопогрузочных машин, при сортировке угля и т.д. На обогатительных фабриках пыль поступает в воздух при дроблении и размоле породы. Вся про­мышленность строительных материалов связана с процессами дробления, помола, смешения и транс­портировки пылевидного сырья и продукта (цемент, кирпич, шамот, динас и др.). В машиностроительной промышленности процессы пылеобразования имеют место в литейных цехах при приготовлении формо­вочной земли, при выбивке, обдирке, обдувке форм и очистке литья, а также в механических цехах - глав­ным образом при шлифовке и полировке изделий. Многие процессы в металлургии, электросварочные работы, плазменная и электроискровая обработка ме­талла сопровождается выделением в воздух пыли и паров, конденсирующихся в аэрозоли. При неполном сгорании топлива в воздух рабочих мест наряду с про­дуктами возгонки и смолистыми веществами могут поступать копоть и сажа, также представляющие со­бой аэрозоли в виде дыма и пыли. В химической про­мышленности многие процессы также связаны с пы-леобразованием. В сельском хозяйстве пыль обра­зуется при рыхлении и удобрении почвы, использо­вании порошкообразных пестицидов, очистки зерна и семян,хлопка,льна и др.

Производственной пылью называют взвешен­ные в воздухе, медленно оседающие твердые части­цы размерами от нескольких десятков до долей мкм. Пыль представляет собой аэрозоль, т.е. дисперсную систему, в которой дисперсной фазой являются твер­дые частицы, а дисперсионной средой - воздух.

Производственную пыль классифицируют по про­исхождению, способу образования и размерам частиц (дисперсности). --.---

По происхождению пыль разделяют на: орга­ническую, неорганическую и смешанную. Органи­ческая пыль может быть естественной - животного или растительного происхождения (древесная, хлоп­ковая, льняная, джутовая, костяная, шерстяная и др.) и искусственной (пыль пластмасс, резины, смол, кра­сителей и других синтетических продуктов). Неоргани^ ческая пыль может быть минеральной (кварцевая, си­ликатная, асбестовая, цементная, наждачная, фарфо­ровая и др.) и металлической (цинковая, железная, медная, свинцовая, марганцевая). К смешанным видам пыли относится пыль, образующаяся в металлургичес­кой промышленности, во многих химических и других производствах.

В зависимости от способа образования различа-ют аэрозоли дезинтеграции и конденсации. Аэро­золи дезинтеграции образуются при механическом измельчении, дроблении и разрушении твердых ве­ществ (бурение, размол, взрыв пород и др.), при ме­ханической обработке изделий (очистка литья, поли­ровка и др.). Аэрозоли конденсации образуются при термических процессах возгонки твердых веществ (плавление, электросварка и др.) вследствие охлаж­дения и конденсации паров металлов и неметаллов, в частности полимерных материалов - пластмасс, в результате термической обработки которых образу­ются парогазоаэрозольные смеси, содержащие твер­дые, жидкие частицы, газы и пары сложного химичес­кого состава.

В зависимости от дисперсности различают: види­мую пыль (более 10 мкм), микроскопическую (от "0,25 до 10 мкм), ультрамикроскопическую (менее 0,25 мкм).

Дисперсность аэрозолей определяет скорость оседания частиц во внешней среде. Мельчайшие час­тицы (0,01-0,1 мкм) могут находиться в воздухе дли­тельное время в состоянии броуновского движения. Более крупные оседают из воздуха со скоростью, обусловленной размером и удельным весом. Ско­рость оседания крупных частиц определяется законом Ньютона (с ускорением силы тяжести), мелких (от 0,1 до 100 мкм) законом Стокса (с ускорением свобод­ного падения).

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»