Расчет режимов резания для фрез чпу. Выбор режимов резания. Основные понятие о фрезерных работах на станках с ЧПУ

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

При фрезеровании выбор наивыгоднейшего режима резания заключается в определении наиболее рациональных глубины резания и числа проходов, подачи на один зуб фрезы и скорости резания.

Глубина резания. При черновой обработке назначают возможно большую глубину резания, соответствующую толщине всего припуска.

При получистовой обработке (до V 5) глубина резания назначается в зависимости от заданных точности и чистоты поверхности в пределах от 0,5 до 1,5-2,0 мм. Чистота обработки со знаками V 5-V 7 достигается при глубине резания от 0,1 до 0,4 мм.

Количество проходов зависит от требуемых чистоты и точности обработки, жесткости закрепления заготовки и мощности станка, а также величины погрешности предшествующей обработки.

Если мощность станка не позволяет снять весь припуск за один проход, приходится делать несколько проходов.

Для случая фрезерования стальных поковок, стальных и чугунных отливок, покрытых окалиной, литейной коркой или загрязненных формовочным песком, глубина фрезерования должна быть больше толщины загрязненного слоя, чтобы зубья фрезы не оставляли на обработанной поверхности черновин. При этом скольжение зуба по корке истирающее действует на фрезу, ускоряя механический износ режущей кромки и снижая ее стойкость.

Ширина фрезерования. Ширина фрезерования задается в чертеже детали, она равна ее ширине. Но в случае обработки нескольких заготовок, закрепленных параллельно в одном зажимном приспособлении, ширина фрезерования кратна ширине заготовок.

Выбор диаметра фрезы. В зависимости от глубины и ширины фрезерования выбирают диаметр фрезы. В табл. 4 приведены диаметры цилиндрических фрез, в табл. 5 - диаметры торцовых, а в табл. 6 - диаметры дисковых фрез.

Ширина фрезерования В в мм до

до 8 мм

Толщина снимаемого 1 1 слоя t в мм до 1 4 1 4

Ширина фрезерования В в мм до

Диаметр фрезы D в мм

Таблица 6.

Ширина фре

Диаметр фрезы D в мм при глубине фрезерования t

зерования В

Подача. При черновом фрезеровании подача должна быть возможно большей. При чистовом фрезеровании подачу берут меньшей, руководствуясь классом чистоты поверхности, обозначенным на чертеже детали.

Основной исходной величиной при выборе подачи для чернового фрезерования является подача на один зуб фрезы.

В табл. 7 и 8 даются ориентировочные значения подач при фрезеровании стали, чугуна и бронзы инструментами из быстрорежущей стали и твердосплавными.

В справочниках по режимам резания, перечисленных в сноске к стр. 103, приводятся допускаемые подачи для разных случаев обработки в зависимости от глубины резания, геометрии фрезы и чистоты обработки.

Скорость резания. Скорость резания обычно определяют по справочным таблицам режимов резания. Так как скорость резания при фрезеровании зависит от принятой стойкости фрезы, то рекомендуемая в таблицах скорость резания рассчитана на стойкость фрезы, согласно следующему.

Для фрез из быстрорежущей стали приняты следующие величины стойкости:

а) для цилиндрических, торцовых, дисковых и фасонных фрез - 180 мин. при работе по сталям, ковкому чугуну и бронзе и 240 мин. при работе по серому чугуну;

б) для концевых фрез с цилиндрическим хвостовиком - 30 мин. при работе по сталям, ковкому чугуну и бронзе и 45 мин. при работе по серому чугуну;

в) для концевых фрез с коническим хвостовиком и прорезных (шлицевых) фрез - 60 мин. при работе по сталям, ковкому чугуну и бронзе и 90 мин. при работе по серому чугуну;

г) для отрезных фрез - 90 мин. при работе по сталям, ковкому чугуну и бронзе и 120 мин. при работе по серому чугуну.

Для фрез, оснащенных пластинками из твердых сплавов, приняты следующие величины стойкости:

а) для цилиндрических фрез - 180 мин. при работе по сталям и чугуну;

б) для торцовых фрез: диаметром до 150 мм - 180 мин., диаметрами 200-250 мм - 240 мин., диаметром 320 мм - 300 мин.,

Величина подачи в мм!зуб при толщине снимаемого слоя

Типы фрез

1 -3 мм

3-б мм

свыше 30 мм

Цилиндрические:

с мелкими зубьями. . . , с крупными зубьями ….

0,08-0,05 0,15-0,10

0,05-0,03 0,10-0,07

Торцовые:

с мелкими зубьями …. с крупными зубьями ….

0Л 0-0,05 0,15-0,10

0,06-0,03 0,10-0,07

Дисковые трехсторонние: цельные с прямыми зубьями цельные с разнонаправленными зубьями …….

сборные со вставными зубьями …..

0,05-0,04 0,06-0,04 0,10-0,07

0,04-0,02 0,05-0,03 0,08-0,05

0,02-0,015 0,03-0,015 0,06-0,03

0,02-0,01 0,04-0,03

Дисковые:

прорезные……………………………..

отрезные………………………………..

0,05-0,003 0,03-0,02

Концевые:

D- 4-10 мм……………………………

D=ll-L20 ММ ………………………

D=21-40 мм…………………………….

0,03-0,015 0,05-0,02 0,10-0,06

0,02-0,015 0,05-0,03 0,10-0,06

0,015-0,008 0,03-0,015 0,08-0,05

0,015-0,008 0,02-0,01 0,07-0,04

0,008-0,005 0,015-0,008 0,05-0,03

0,015-0,008 0,04-0,02

0,015-0,008 0,02-0,01

Фасонные:

незатылованные………………………

затылованные………………………….

0,07-0,05 0,10-0,05

0,07-0,05 0,10-0,05

0,07-0,05 0,10-0,05

0,06-0,04 0,08-0,05

0,04-0,03 0,06-0,04

0,03-0,01 0,04-0,02

Примечание. При обработке чугуна и бронзы приводимые в таблице значения подач следует увеличить в 1,5-2 раза в зависимости от условий обработки.

Величина подачи в мм!эуб при толщине снимаемого слоя

Типы фрез

1-3 мм

3-5 мм

5-8 мм

Цилиндрические. .

Торцовые. . . . ,

Дисковые:

при фрезеровании

пазов ………………………..

0,15-0,08 0,2 -0,15

0,1 -0,08 0,15-0,10

0,1 -0,8 0,15-0,10

0,08-0,05 0,10-0,08

Концевые:

при фрезеровании

пазов ………………………..

при фрезеровании плоскостей ….

0,06-0,04 0,2 -0,15

0,05-0,03 0,15-0,10

0,04-0,03 0,10-0,06

0,04-0,03 0,07-0,04

диаметром 400 мм - 420 мин. - в случае работы по стали; диаметром до 90 мм- 120 мин., диаметрами 110-200 мм- 180 мин., диаметрами 225-275 мм - 240 мин., диаметрами 300-350 мм - 300 мин., диаметрами 375-400 мм - 420 мин. - в случае работы по чугуну;

в) для концевых фрез и коронок - 120 мин. при работе по стали и чугуну;

г) для дисковых фрез: диаметром до 110 мм - 120 мин., диаметром 130-175 мм - 180 мин., диаметром 200 мм - 240 мин.

Порядок выбора режима резания. По установленным значениям диаметра фрезы, ширины фрезерования, глубины резания и подачи на один зуб определяется скорость резания, минутная подача и потребная мощность согласно соответствующим таблицам или справочникам, перечисленным в сноске к стр. 103. Рекомендуемые в них скорости резания для обычных и скоростных режимов фрезерования рассчитаны на работу фрезами определенных конструкций, геометрии и материала, наличие охлаждения (в тех случаях, когда оно целесообразно), определенную твердость обрабатываемого материала, наличие или отсутствие корки на обрабатываемой поверхности и т. д.

Для других условий обработки при выборе скорости резания необходимо вводить поправочные коэффициенты, которые приводятся в соответствующих картах нормативов или таблицах справочников.

По выбранной скорости резания и принятому диаметру фрезы нетрудно определить число оборотов фрезы, пользуясь формулой (2), и затем определить минутную подачу, используя формулу (4). Однако в картах нормативов скорости резания обычно приводится число оборотов фрезы для данного диаметра и минутная подача для данной подачи на один зуб или один оборот фрезы. Тут же обычно дается мощность резания N3, соответствующая рекомендуемому режиму резания.

Таким образом, в результате выбора режима резания мы определяем рекомендуемое число оборотов п фрезы, минутную подачу 5 и потребную мощность резания N3. В дальнейшем изложении при рассмотрении отдельных операций будет показано, как конкретно назначают режимы резания.

Скорость резания, v c ​

Окружная скорость перемещения режущей кромки относительно заготовки.

Эффективная или фактическая скорость резания, v e

Окружная скорость на эффективном диаметре резания (DC ap ). Это значение необходимо для определения режимов резания при фактической глубине резания (a p ). Это особенно важно при использовании фрез с круглыми пластинами, фрез со сферическим концом и всех фрез с большим радиусом при вершине, а также фрез с главным углом в плане менее 90 градусов.​

Частота вращения шпинделя, n

Число оборотов фрезы, закрепленной в шпинделе, совершаемое за минуту. Этот параметр связан с характеристиками станка и вычисляется на основе рекомендованной скорости резания для данной операции.

Подача на зуб, f z

Параметр для расчёта минутной подачи. Подача на зуб определяется исходя из рекомендуемых значений максимальной толщины стружки.

Подача на оборот, f n

Вспомогательный параметр, показывающий, на какое расстояние перемещается инструмент за один полный оборот. Измеряется в мм/об и используется для расчёта минутной подачи и нередко является определяющим параметром в отношении чистовой обработки.

Минутная подача, v f

Её также называют скоростью подачи. Это скорость движения инструмента относительно заготовки, выражаемая в пройденном пути за единицу времени. Она связана с подачей на зуб и количеством зубьев фрезы. Число зубьев фрезы (z n ) может превышать эффективное число зубьев (z c ), то есть количество зубьев в резании, которое используется для определения минутной подачи. Подача на оборот (f n ) в мм/об (дюйм/об) используется для расчёта минутной подачи и нередко является определяющим параметром в отношении чистовой обработки.

Максимальная толщина стружки, h ex

Этот параметр связан с подачей на зуб (f z ), шириной фрезерования (a e ) и главным углом в плане (k r ). Толщина стружки – важный критерий при выборе подачи на зуб для обеспечения наиболее высокой минутной подачи.

Средняя толщина стружки, h m

Полезный параметр для определения удельной силы резания, используемой для расчёта потребляемой мощности.​

Скорость съёма металла, Q (cм 3 /мин)

Объём снятого металла в кубических миллиметрах в минуту (дюйм 3 /мин). Определяется на основе глубины и ширины резания и подачи.

Удельная сила резания, k ct

Постоянная материала, используемая для расчёта мощности и выражаемая в Н/мм2

Время обработки, T c (мин)

Отношение обрабатываемой длины (l m ) к минутной подаче (v f ).​

Потребляемая мощность, P c и КПД, η mt

Методы фрезерования: определения

Линейное врезание

Одновременное поступательное перемещение инструмента в осевом и радиальном направлениях.

Круговая интерполяция

Перемещение инструмента по круговой траектории при постоянной координате z.

Круговое фрезерование с врезанием под углом

Перемещение инструмента по круговой траектории с врезанием (винтовая интерполяция).

Фрезерование в одной плоскости

Фрезерование с постоянной координатой z.

Фрезерование с точечным контактом

Неглубокое радиальное врезание фрезами с круглыми пластинами или сферическим концом, при котором зона резания смещается от центра инструмента.

Профильное фрезерование

Формирование повторяющихся выступов при профильной обработке поверхностей сферическим инструментом.

Скорость вращения шпинделя, скорость подачи - всё это основы резания. Получить информацию об этом сравнительно легко. В любой книге по фрезерному делу можно найти данную информацию. Ниже приводится краткий конспект одной из таких книг. Выбор диаметра фрезы для работы определяется по двум параметрам - ширине и глубине фрезерования.

Ширина фрезерования - ширина обрабатываемой поверхности задается, как правило, в чертеже и определяется размером детали или заготовки. В случае обработки нескольких заготовок закреплённых рядом, ширина фрезерования кратно увеличивается.

Глубина фрезерования (или глубина резанья) - толщина слоя снимаемого фрезой материала за один проход. Если снимать много то фреза делает два и более проходов. При этом последний проход производят с небольшой глубиной резанья для получения более чистой поверхности обработки. Такой проход называют чистовым фрезерованием в отличие от предварительного или чернового фрезерования, которое производят с большей глубиной резанья. Однако при небольшом припуске на обработку, фрезерование производится за один проход.

Скорость резания - это путь (обычно обозначаемый в метрах), который проходят режущие кромки зубьев фрезы в одну минуту. Скорость резания рассчитывается по следующей формуле: длину окружности фрезы умножаем на количество зубьев фрезы и на количество оборотов в минуту и все делим всё на 1000 (переводим миллиметры в метры).
Скорость резания обычно определяют по справочным таблицам режимов резания. Так как скорость резания при фрезеровании зависит от стойкости конкретной фрезы, то рекомендуемая в таблицах скорость резания соответствует тому, на какой максимальной скорости может происходить резание без поломки фрезы.

Подача - это величина (обычно обозначаемая в миллиметрах) перемещения шпинделя станка в продольном - Y, поперечном - X или вертикальном - Z направлении.

Подача в одну минуту - величина перемещения шпинделя в миллиметрах за время, равное одной минуте. Вычисляется по формуле: подача в одну минуту равна подачи на один зуб фрезы умноженной на число зубьев фрезы и умноженной на количество оборотов фрезы в минуту.

Выбор режимов резания

Как известно, основами резания являются скорость вращения шпинделя и скорость подачи. Выбор диаметра фрезы для работы определяется по двум параметрам - ширине и глубине фрезерования. Ширина фрезерования, или ширина обрабатываемой поверхности, задается, как правило, в чертеже и определяется размером детали или заготовки. В случае обработки нескольких заготовок, закрепленных рядом, ширина фрезерования кратно увеличивается.

Глубина фрезерования - толщина слоя снимаемого фрезой материала за один проход. Если снимать много, то фреза делает два и более проходов. При этом последний проход производят с небольшой глубиной резанья для получения более чистой поверхности обработки. Такой проход называют чистовым фрезерованием в отличие от предварительного или чернового фрезерования, которое производят с большей глубиной резанья. Однако при небольшом припуске на обработку фрезерование производится за один проход.

Скорость резанья - это путь (обычно обозначаемый в метрах в минуту), который проходят режущие кромки зубьев фрезы в одну минуту.

Скорость резанья обычно определяют по справочным таблицам режимов резанья. Так как скорость резанья при фрезеровании зависит от стойкости конкретной фрезы, то рекомендуемая в таблицах скорость резанья соответствует тому, на какой максимальной скорости может происходить резанье без поломки фрезы.

Подача в одну минуту - величина перемещения шпинделя в миллиметрах за время, равное одной минуте. Вычисляется она по следующей формуле: подача в одну минуту равна подаче на один зуб фрезы, умноженной на число зубьев фрезы и умноженной на количество оборотов фрезы в минуту.

Для мягкой древесины (сосна)

Тип инструмента Рабочая подача мм/мин Скорость вращения Глубина за проход

Торцевая 6мм 2000-3000 20 000-24 000 7,5-8

Торцевая 3мм 1000-1500 20 000-24 000 4,5

Гравер 30°х0,2 800-600 20 000-24 000 3

Для твердой древесины (бук, дуб, фанера)

Торцевая 6мм 1500-2500 20 000-24 000 7,5-8

Торцевая 3мм 500-1000 20 000-24 000 4,5

Гравер 30°х0,2 300-600 20 000-24 000 3

Для двухслойного пластика

Торцевая 3 мм 2000 12 000 0,3

Гравер 30°х0,2 2000 20 000 0,3

Для акрила и полистирола

Торцевая 6 мм 1000-1300 10 000-12 000 3

Торцевая 3 мм 800-1000 12 000-16 000 1,5

Гравер 30°х0,2 300-500 18 000-20 000 0,3-0,6

Для ПВХ

Торцевая 6 мм 1500-2000 12 000 8-10

Торцевая 3 мм 1500-2000 12 000-15 000 4-6

Для алюминиевых сплавов

Торцевая 6 мм 800-1000 14 000 - 18000 0,6

Торцевая 3 мм 500-800 13 000-15 000 0,3

От правильности выбора режимов резания при обработке металлических изделий на фрезерных станках зависит качество производимых работ. По этой причине аналитический расчет таких режимов должен осуществляться максимально грамотно и качественно.

1

При фрезеровании обработка деталей по своей сути намного сложнее, чем при точении. Связано это с тем, что любой зуб фрезерного инструмента при каждом обороте фрезы сначала входит, а затем выходит из контакта с обрабатываемым изделием. Причем процесс его входа в контакт сопровождается ударом достаточно ощутимой силы. Кроме того, с детали при фрезеровании снимается прерывистая стружка, толщина которой не является постоянной (при точении сечение стружки всегда имеет один и тот же показатель).

По указанным причинам оператору необходимо очень ответственно выполнять расчет режимов резания, чтобы добиться максимальной производительности фрезерного агрегата на самых выгодных условиях его функционирования с учетом мощности оборудования.

Фрезерная обработка детали

Под такими условиями понимают режимы резания, обеспечивающие оптимальное сочетание подачи при фрезеровании, скорости и силы процесса, глубины срезаемого металлического слоя с целью получения заданной чистоты и точности обработки при минимальных затратах на нее.

На любом металлообрабатывающем предприятии имеются стандартные нормативы, в которых даются четкие рекомендации, облегчающие выбор варианта резки различных заготовок. С их помощью можно разрабатывать операционные карты и непосредственно технологический процесс, в который включаются все элементы фрезерования. Но многие параметры, указанные в таких нормативах, не подходят для случаев, когда используется новое оборудование и современный режущий инструмент. В подобных ситуациях оператору приходится самостоятельно производить расчет режимов обработки. Далее мы опишем их основные элементы.

2

Материал, из которого сделана фреза, напрямую влияет на возможности и качество режущих операций. Наиболее эффективным инструментом признаются фрезы из и резцы с пластинками из твердых сплавов. Их используют в настоящее время для большинства фрезерных операций, но при условии, что технический потенциал станков (показатель мощности их двигателя, скорость вращения шпинделя и так далее) позволяет работать с такими приспособлениями.

Фрезы из быстрорежущей стали

Некоторые агрегаты старых моделей просто-напросто не могут применять твердосплавный и быстрорежущий инструмент. Тогда на них работают обычными концевыми и иными фрезами. Если же изделие после фрезерования должно иметь высокую точность и чистоту поверхности, и при этом скорость выполнения процедуры не имеет большого значения, лучше использовать приспособления из обычных легированных и .

Геометрия режущей части инструмента также влияет на выбор конкретного режима обработки детали. Форму и размеры, которые имеет зуб фрезы, задние и передние ее углы, параметры переходной кромки и углов подбирают из специальных таблиц. В них даются сведения о том, какие размеры обязан иметь зуб и все указанные углы при работе с заготовками, сделанными из различных материалов (легированные, жаропрочные, углеродистые стали, сплавы на основе меди, чугун). При использовании быстрорежущего инструмента все нужные параметры берутся из другой таблицы.

Разные виды инструмента

Современные комбинаты по производству фрез в большинстве случаев поставляют их с четко обозначенными геометрическими размерами, которые оговорены в соответствующих Госстандартах. Каким-либо образом изменить геометрию такого инструмента фрезеровщик не может, поэтому ему требуется правильно сделать выбор нужного ему приспособления (например, торцевой фрезы) из набора имеющихся рабочих приспособлений. Особых проблем при этом у опытного специалиста не возникает, так как он может воспользоваться таблицами с рекомендованными геометрическими величинами фрезерного инструмента.

3

Для рационального фрезерования любых изделий указанные параметры имеют огромное значение. Глубина (иными словами – толщина срезаемого слоя) представляет собой дистанцию между обработанной и обрабатываемой поверхностями. Величина срезаемого слоя обычно подбирается максимально большой, всегда стараются делать всего один проход инструмента с целью получения заданного результата фрезерования.

Если же поверхность готовой детали должна иметь повышенную чистоту и точность, следует осуществлять операцию в два прохода – черновой, а затем чистовой. Иногда величина срезаемого слоя высока и даже два прохода не позволяют качественно выполнить операцию. В данном случае требуемая глубина достигается посредством выполнения двух черновых проходов.

Осуществление чернового прохода

Кроме того, нужной толщины срезаемого слоя не всегда удается добиться за один проход на старых фрезерных агрегатах. Их силы (мощности электрооборудования) просто-напросто не хватает. В подобных ситуациях также рекомендуется делать две черновые процедуры. Под шириной фрезерования понимают ширину обрабатываемого изделия. Если на станке фрезеруется сразу несколько деталей, которые крепятся в зажимном механизме параллельно друг другу, учитывается их общая ширина.

Величину заготовок оператор узнает из рабочего чертежа, прилагаемого к каждому изделию, которое ему нужно обработать. Ширина и глубина, как элементы фрезерования, определяются достаточно легко даже неопытными рабочими. Но здесь стоит помнить, что показатель срезаемого слоя при работе с отливками и поковками из стали и чугуна, на поверхности которых имеются загрязнения, литейная корка или окалина, берется больше величины загрязненного слоя.

Если не прислушиваться к этому совету, зуб инструмента будет скользить по загрязненной поверхности и оставлять на ней дефекты в виде черновин. Необходимый показатель срезаемого слоя будет достигнут и в этом случае, но режущая кромка фрезы быстро придет в негодность. Да и затраты силы (мощности) оборудования потребуются значительные.

Срезание загрязненного слоя

  • 0,5–1 мм – чистовая обработка;
  • 5–7 мм – черновая обработка по чугунному и стальному литью;
  • 3–5 мм – черновое фрезерование деталей из сталей разных марок.

Соблюдение данных показателей срезаемого слоя обычно гарантирует высокое качество обработки заготовок на станках любой мощности.

4

Показатель срезаемого слоя, а также ширина обработки обуславливают выбор диаметра рабочего приспособления. Подбор сечения фрезы для резания производится по трем таблицам для разных видов инструмента:

  • дискового;
  • торцового;
  • цилиндрического.

Производительность фрезерной обработки зависит от грамотного подбора сечения фрезы, так как диаметр инструмента влияет на величину среза. Она будет при идентичной глубине фрезерования и подаче приспособления тем меньше, чем большее сечение имеет фреза. Производя расчет режимов обработки, это всегда нужно принимать во внимание.

Подбор диаметра фрезы

Отметим, что оператору станка проще работать со срезами большой толщины (чем меньше глубина резания, тем выше удельное давление, а значит, необходимо затрачивать больше силы для обработки). По этой причине при любой возможности он должен подбирать фрезу с минимальным диаметром. Сечение рабочего инструмента также влияет на расстояние, которое преодолевает фреза при одном проходе. Данный показатель называют величиной пути. Формула для его расчета учитывает величины перебега и врезания инструмента, а также непосредственно длину обрабатываемой детали.

Показатель перебега чаще всего равняется 2–5 миллиметрам. С целью снижения холостого хода фрезерного агрегата (по сути – для уменьшения величины перебега) нужно брать фрезы малого сечения. Расчет показателя врезания осуществляется по формуле, учитывающей глубину обработки детали на конкретном станке определенной мощности. Для большинства фрез любых типов готовые значения пути врезания даются в таблицах. Найти в них эти элементы несложно.

Инструмент малого сечения

Еще одной величиной, на которую влияет сечение инструмента, является крутящий момент определенной силы. Шпинделю агрегата следует сообщать меньший момент при малом диаметре фрезы, увеличивая его при повышении сечения приспособления для резания.

Учитывая все сказанное, может показаться, что целесообразнее всего производить выбор фрезы с малым сечением. Но это не так. Проблема заключается в следующем: со снижением диаметра инструмента для него необходимо подбирать оправку с малой жесткостью (так как фреза будет тонкой). А это ведет к потребности снижать величину срезаемой стружки с детали, то есть к необходимости уменьшать силы давления на оправку. Эффективность режима фрезерования при этом, как вы сами понимаете, снижается.

5

При чистовом фрезеровании подача зависит от того, какой чистотой должна будет характеризоваться обработанная поверхность изделия, при черновом – от следующих факторов:

  • показатель жесткости схемы "деталь/фреза/станок";
  • материал, из которого изготовлена деталь;
  • углы заточки рабочего инструмента;
  • величина мощности (силы) привода фрезерного агрегата;
  • материал инструмента для резания.

Выбор подачи для обработки поверхности

Главным первоначальным показателем, по которому выполняется выбор подачи для черновой обработки, считается величина S(зуб). Она зависит от варианта монтажа (по отношению к детали, подвергаемой обработке) режущего инструмента, который определяет:

  • толщину стружки;
  • параметр угла, под которым зуб начинает взаимодействовать с заготовкой;
  • величину угла, при которой зуб фрезы выходит из детали после ее обработки.

Элементы фрезы

Показатель S(зуб), как и иные элементы фрезерной обработки металлических заготовок, важен для правильного расчета режимов резания. Вручную его никто не высчитывает. Обычно пользуются стандартными таблицами, составленными для разных видов рабочего инструмента.

Выбор подачи при чистовой обработке также производится по табличным данным. Здесь есть один нюанс. На каждый зуб инструмента при чистовой обработке приходится очень малая величина подачи. Поэтому в таблицах даются значения на полный оборот инструмента, а не на один его зуб.

6

Скорость фрезерования определяется по специальным нормативам, включающим в себя множество карт для разных типов фрез и обрабатываемых материалов (для стали, алюминия и пр.). В таких картах учитываются мощности станков и другие их технические показатели. Выбрать нужную скорость обработки за счет этого достаточно просто.

Обратите внимание – стандартные таблицы для установления скорости содержат информацию для условий фрезерования одним инструментом при определенном уровне стойкости фрезы. Если стойкость инструмента отличается от табличного стандартного показателя, расчет скорости осуществляют с учетом поправочных коэффициентов. Последние созданы на основании следующих данных:

  • для торцового инструмента – ширина обработки;
  • свойства (механические) фрезеруемой заготовки;
  • величина основного угла фрезы в плане;
  • отсутствие либо наличие на детали окалины.

Таблица для расчета скорости резания

В описываемых нормативах для определения скорости указываются такие элементы – минутная подача и количество оборотов. Кинематика, показатели силы и технических возможностей шпинделя конкретного оборудования для фрезерования нередко отличаются от табличных данных. В подобных ситуациях рабочий на свое усмотрение подбирает рациональную скорость функционирования станка. При этом он обязан сделать выбор таким образом, чтобы фреза не затуплялась преждевременно.

Отдельно отметим, что при фрезеровании заготовок из алюминия рекомендуется назначать высокоскоростные режимы их обработки. Они обеспечивают при малых затратах силы электрооборудования большую глубину резания. Если же работать с деталями из алюминия на медленных скоростях, увеличивается риск выхода фрез из строя, ввиду того, что получающаяся мягкая стружка полностью забивает канавки инструмента.


К атегория:

Фрезерные работы

Выбор рациональных режимов фрезерования

Выбрать рациональный режим фрезерования на данном станке означает, что для данных условий обработки (материал и марка заготовки, ее профиль и размеры, припуск на обработку) надо выбрать оптимальный тип и размер фрезы, марку материала и геометрические параметры режущей части фрезы, смазочно-охлаждаю-щую жидкость и назначить оптимальные значения следующих параметров режима резания: В, t, sz. v, п, Ne, Тм.

Из формулы (32) следует, что на объемную производительность фрезерования параметры В, t, sz и v оказывают одинаковое влияние, так как каждый из них входит в формулу в первой степени. Это означает, что при увеличении любого из них, например, в два раза (при прочих неизменных параметрах) объемная производительность увеличится также в два раза. Однако на стойкость инструмента указанные параметры оказывают далеко не одинаковое влияние (см. § 58). Поэтому с учетом стойкости инструмента выгоднее прежде всего выбирать максимально допустимые значения тех параметров, которые в меньшей степени влияют на стойкость инструмента, т. е. в такой последовательности: глубина резания, подача на зуб и скорость резания. Поэтому и выбор этих параметров режимов резания при фрезеровании на данном станке следует начинать в той же последовательности, а именно:

1. Назначается глубина резания в зависимости от припуска на обработку, требований к шероховатости поверхности и мощности станка. Припуск на обработку желательно снять за один проход с учетом мощности станка. Обычно глубина резания при черновом фрезеровании не превышает 4-5 мм. При черновом фрезеровании торцовыми твердосплавными фрезами (головками) на мощных фрезерных станках она может достигать 20-25 мм и более. При чистовом фрезеровании глубина резания не превышает 1-2 мм.

2. Назначается максимально допустимая по условиям обработки подача. При установлении максимально допустимых подач следует применять подачи на зуб, близкие к «ломающим».

Последняя формула выражает зависимость подачи на зуб от глубины фрезерования и диаметра фрезы. Величина максимальной толщины среза, т. е. значение постоянного коэффициента I с в формуле (21), зависит от физико-механических свойств обрабатываемого материала \ (для данного типа и конструкции фрезы). Значения максимально допустимых подач ограни- j чиваются различными факторами:

а) при черновой обработке - жесткостью и виброустойчивостью инструмента (при доста- i точной жесткости и виброустойчивости станка),’ жесткостью обрабатываемой заготовки и прочностью режущей части инструмента, например зуба фрезы, недостаточным объемом стружечных канавок, например, для дисковых фрез и др. Так, подача на зуб при черновом фрезеровании стали цилиндрическими фрезами со вставными ножами и крупным зубом выбирается в пределах 0,1-0,4 мм/зуб, а при обработке чугуна до 0,5 мм/зуб;

б) при чистовой обработке - шероховатостью поверхности, точностью размера, состоянием поверхностного слоя и др. При чистовом фрезеровании стали и чугуна назначается сравнительно малая подача на зуб фрезы (0,05-0,12 мм/зуб).

3. Определяется скорость резания; так как она оказывает самое большое влияние на стойкость инструмента, то ее выбирают исходя из принятой для данного инструмента нормы стойкости. Скорость резания определяется по формуле (42) или по таблицам нормативов режимов резания в зависимости от глубины и ширины фрезерования, подачи на зуб, диаметра фрезы, числа зубьев, условий охлаждения и др.

4. Определяется действующая мощность резания Ne при выбранном режиме по таблицам нормативов или по формуле (39а) и сопоставляется с мощностью станка.

5. По установленной скорости резания (и, или i^) определяется ближайшая ступень частоты вращения шпинделя станка из числа имеющихся на данном станке по формуле (2) или по графику (рис. 174). Из точки, соответствующей принятой скорости резания (например, 42 м/мин), проводят горизонтальную линию, а из точки с отметкой выбранного диаметра фрезы (например, 110 мм) - вертикальную. По точке пересечения указанных линий определяют ближайшую ступень чисел оборотов шпинделя. Так, в примере, показанном на рис. 172, при фрезеровании фрезой диаметром D = 110 мм со скоростью резания 42 м/мин частота вращения шпинделя будет равна 125 об/мин.

Рис.174 Номограмма частоты вращения фрезы

6. Определяется минутная подача по формуле (4) или по графику (рис. 175). Так, при фрезеровании фрезой D = 110 мм, z = 10 при sz = = 0,2 мм/зуб и п = 125 об/мин минутная подача по графику определяется следующим образом. Из точки, соответствующей подаче на зуб sг = 0,2 мм/ зуб, проводим вертикальную линию до пересечения с наклонной линией, соответствующей числу зубьев фрезы г = 10. Из полученной точки проводим горизонтальную линию до пересечения с наклонной линией, соответствующей принятой частоте вращения шпинделя л = 125 об/мин. Далее из полученной точки проводим вертикальную линию. Точка пересечения этой линии с нижней шкалой минутных подач, имеющихся на данном станке, определяет ближайшую ступень минутных подач.

7. Определяется машинное время.

Машинное время. Время, в течение которого происходит процесс снятия стружки без непосредственного участия рабочего, называется машинным временем (например, на фрезерование плоскости заготовки с момента включения механической продольной подачи до момента ее выключения).

Рис. 1. Номограмма минутной подачи

Повышение производительности при обработке на металлорежущих станках ограничивается двумя основными факторами: производственными возможностями станка и режущими свойствами инструмента. Если производственные возможности станка малы и не позволяют полностью использовать режущие свойства инструмента, то производительность такого станка будет составлять лишь некоторую часть от возможной производительности при максимальном использовании инструмента. В том случае, когда производственные возможности станка значительно превышают режущие свойства инструмента, на станке может быть достигнута максимально возможная при данном инструменте производительность, но при этом не будут полностью использованы возможности станка, т. е. мощность станка, максимально допустимые силы резания и т. д. Оптимальными с точки зрения производительности и экономичности использования станка и инструмента будут такие случаи, когда производственные мощности станка и режущие свойства инструмента будут совпадать или близки друг к другу.

Это условие положено в основу так называемых производственных характеристик станков, которые были предложены и разработаны проф. А. И. Кашириным. Производственная характеристика станка представляет собой график зависимостей возможностей станка и инструмента. Производственные характеристики позволяют облегчить и упростить определение оптимальных режимов резания при обработке на данном станке.

Режущие свойства того или иного инструмента характеризуются режимами резания, которые допускаются в процессе обработки. Скорость резания при заданных условиях обработки можно определить по формуле (42, а). Практически же ее находят по таблице режимов резания, которые приведены в справочниках нормировщика или технолога. Однако следует отметить, что нормативы по режимам резания как для фрезерования, так и для других видов обработки разрабатываются, исходя из режущих свойств инструмента для различных случаев обработки (тип и размер инструмента, вид и марка материала режущей части, обрабатываемый материал и др.), и не связаны со станками, на которых будет производиться обработка. Так как производственные возможности различных станков разные, то практически осуществимый оптимальный режим обработки на разных станках будет различным для одних и тех же условий обработки. Производственные возможности станков зависят прежде всего от эффективной мощности станка, частоты вращения, подач и др.

Рис. 2. Врезание и перебег

Производственные характеристики фрезерных стянкои для случая (Ьпезепования тогшо-выми фрезами были разработаны проф. А. И. Кашириным и автором.

Принцип построения производственных характеристик фрезерных станков (номограмм) для работы торцовыми фрезами основан на совместном графическом решении двух уравнений, которые характеризуют зависимость скорости резания vT по формуле (42) при -Bz’ = const, с одной стороны, и скорости резания ид„ допускаемой мощностью станка, - с другой. Скорость резания vN может быть определена по формуле

Рис. 3. Производственная характеристика консольно-фрезерного станка 6Р13


← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»