Глобальный круговорот воды в биосфере. Биогеохимический круговорот воды в биосфере, нарисовать схему и объяснить. I. Организационный момент. Настрой класса на работу

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

ФГБОУ ВПО «Саратовский государственный технический университет имени Гагарина Ю. А.»

Кафедра «Экология»

Курсовая работа
по предмету учение о биосфере
на тему: «Круговорот воды в биосфере»

Выполнила:
студентка группы ЭКЛ-41
Азизова М.Н.

Проверил:
______________________________ _____к. б. н., доцент Беляченко А. А.
Члены комиссии:
______________________________ ____к. б. н., доцент Абросимова О. В.

Зав. кафедрой _______________________д. б. н., проф. Тихомирова Е. И.

Саратов 2012

Введение
Известно, что человеческий организм почти на 65% состоит из воды. Вода входит в состав тканей, без нее невозможно нормальное функционирование организма, осуществление процесса обмена, поддержание теплового баланса, удаление продуктов метаболизма и т.д.
Потеря организмом большого количества воды опасна для жизни человека. В жарких районах без воды человек может погибнуть через 5-7 суток, а без пищи при наличии воды человек может жить длительное время. Даже в холодных поясах для сохранения нормальной работоспособности человеку нужно около 1,5-2,5 литров воды в сутки.
Если количество воды, которое теряет человек, достигает 10% массы тела в сутки, наступает значительное снижение работоспособности, а если оно возрастает до 25%, то это обычно приводит к смерти. Однако даже при большой потере воды все нарушенные процессы в организме быстро восстанавливаются, если организм пополнится водой до нормы.
Использование в быту. Еда и напитки: Вода, используемая для питья, приготовления пищи, льда, напитков, консервов, и многих других пищевых продуктов, только маленькая часть обширного спектра ее применения. Однако это требует соблюдения стандарта качества на питьевую воду
Промышленное применение. Использование воды в промышленности зависит от характера и объема промышленности конкретного региона. Это могут быть системы охлаждения и отопления, производство пищевых продуктов, переработка отходов производства и т.д.
Недостаток влаги служит ограничивающим фактором, определяющим границы жизни и ее зональное распределение. При недостатке воды у животных и растений вырабатываются приспособления к ее добыванию и сохранению.

    Общие сведения о воде
Вода - сок жизни. Такое определение дал воде Леонардо да Винчи.
В воде зародилась жизнь, без воды не возможно вообще существование - ни растений, ни животных, ни людей. Академик Ферсман назвал воду ” самым важным минералом на земле, без которого нет жизни “.
Вода - это величайшая ценность не только для жителей пустыни, но и для каждого человека. Восточная поговорка гласит: “где вода, там жизнь. Где кончается вода, там кончается земля”.
Все живое вещество нашей планеты на 2/3 состоит из воды. Без воздуха жизнь возможна (анаэробные организмы), без воды – нет. Недаром академик Вернадский считал, что «вода и живое вещество – генетически связанные части организованности земной коры», а немецкий физиолог Эмиль Дюбуа писал: «Жизнь – это одушевленная вода». Без воды человек не может жить и 3 дней. Вода составляет 60% массы человека к 50 годам. Основная часть воды, около 70%, сосредоточена внутри клеток, а 30% - это внеклеточная вода, которая разделяется на две части: меньшая часть, около 7%, - это кровь и лимфа (она является фильтром крови), а большая часть – межтканевая, омывающая клетки. Без воды невозможно питание и развитие организма. Для жизни необходимо, чтобы питательные вещества попадали в кровь, которая разносит их по всему организму. Сама кровь, как показано, также содержит большое количество воды. В каждом органе нашего тела, в каждой живой клетке идут превращения одних веществ в другие. Из поступающей в организм пищи вырабатываются сложные вещества, необходимые для его нормальной работы. Все эти превращения возможны только тогда, когда различные вещества в организме находятся в растворе. Вот почему так много воды в нашем теле.
Среди многих полезных свойств воды едва ли не самым важным является ее способность утолять жажду. «Вода…- это живая кровь, которая создает жизнь там, где ее не было» (А.А. Карпинский). Человек очень быстро ощущает нарушение водного баланса. Если количество воды в человеческом организме уменьшится на 1-2% (0,5-1л) против нормы, человек испытывает жажду; при уменьшении на 5-8% (2-3 л) его кожа сморщивается, во рту пересыхает, сознание затемняется, могут появиться галлюцинации; потеря 10% влаги (~5 л) вызывает расстройство психического аппарата, нарушение глотательного рефлекса; при потере 14-15% (7-8 л) человек умирает. Говоря о чудесных свойствах воды и ее незаменимости в живом организме, нельзя не остановиться на замечательной способности самого организма регулировать водный баланс.
Как известно, по норме человек потребляет 2,5 л воды в сутки. Эта вода является жизненно необходимой для существования человека – она растворяет питательные вещества для их проникания в клетку, участвует в химических процессах при пищеварении, а также вымывает продукты жизнедеятельности и уходит из организма через почки и кожу, унося с собой вредные вещества. Если поступление воды в организм прекратилось, она продолжает выделяться через почки и кожу. При этом постоянно происходит сгущение крови. Для того чтобы прекратить дальнейшее ее сгущение, необходимо вызвать чувство жажды в «руководстве» организма. Сгущенная кровь, дойдя до головного мозга, раздражает центр, регулирующий водно-солевой баланс, оттуда поступает сигнал в кору головного мозга приблизительно следующего содержания: «Уважаемый хозяин! Надо выпить воды». Если же нет возможности утолить жажду, из названного выше центра поступает сигнал в маленькую железу, находящуюся под головным мозгом (гипофиз). На сигнал «сверху» гипофиз выделяет гормон, который кровью доставляется в почки и приказывает им в целях экономии сократить выделение воды с мочой. Такое состояние организма позволяет выиграть некоторое время, необходимое для поиска воды. Таким образом, очевидно, что жизнедеятельность человеческого организма прочно связана с водой.
2. Круговорот воды в биосфере

Рис 2. Круговорот воды в биосфере.

Круговорот воды в природе (гидрологический цикл) - процесс циклического перемещения воды в земной биосфере. Состоит из испарения, конденсации и осадков.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше - положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

Три четверти поверхности земного шара покрыты водой. Водную оболочку Земли называют гидросферой. Большую ее часть составляет соленая вода морей и океанов, а меньшую - пресная вода озер, рек, ледников, грунтовые воды и водяной пар.

На земле вода существует в трех агрегатных состояниях: жидком, твердом и газообразном. Без воды невозможно существование живых организмов. В любом организме вода является средой, в которой происходят химические реакции, без которых не могут жить живые организмы. Вода является самым ценным и самым необходимым веществом для жизнедеятельности живых организмов.

Постоянный обмен влагой между гидросферой, атмосферой и земной поверхностью, состоящий из процессов испарения, передвижения водяного пара в атмосфере, его конденсации в атмосфере, выпадения осадков и стока, получил название круговорота воды в природе. Атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично - просачиваются в землю и образуют подземные воды.

Различают несколько видов круговоротов воды в природе:

1. Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

2. Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

3. Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.

В конце концов, осадки в процессе движения опять достигают Мирового океана.

Ф-Х свойства воды

1. Поверхностное натяжение - это степень сцепления молекул воды друг с другом. Органические и неорганические соединения растворяются в жидких средах, содержащих воду, поэтому поверхностное натяжение потребляемой нами воды имеет большое значение. Любая жидкость в организме содержит воду и, так или иначе, участвует в реакциях. Вода в организме играет роль растворителя, обеспечивает транспортную систему и служит средой обитания наших клеток. Поэтому, чем ниже поверхностное натяжение, соответственно, выше растворяющая способность воды, тем лучше вода выполняет свои основные функции. В том числе и роль транспортной системы. Поверхностное натяжение определяет смачиваемость воды и ее растворяющие свойства. Чем ниже поверхностное натяжение, тем выше растворяющие свойства, тем выше текучесть. Все три величины - поверхностное натяжение, текучесть и растворяющая способность - связаны между собой.


2. Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется. Это ведет к развитию болезней.

3. Окислительно-восстановительный потенциал воды. Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов в воде. Это очень важный показатель для организма человека.

4. Жесткость воды - наличие в ней различных солей.

5. Температура воды определяет скорость протекания биохимических реакций.

6. Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для жизнедеятельности организма человека. Жидкости организма представляют собой электролиты, восполняемые минералами, в том числе и за счет воды.

7. Экология воды - химическое загрязнение и биогенное загрязнение. Чистота воды - наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

8. Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду. Когда вода находится в состоянии твердого кристалла (льда), молекулярная решетка жестко ориентирована. При таянии разрываются жесткие структурные молекулярные связи. И часть молекул, высвобождаясь, образует жидкую среду. В организме вся жидкость структурирована особым образом.

9. Информационная память воды. За счет структуры кристалла происходит запись информации, исходящей от биополя. Это одно из очень важных свойств воды, имеющее большое значение для всего живого.

10. Хадо - волновая энергетика воды.

2. Биологическое значение воды

Вода как растворитель. Вода – превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость. Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью (4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии (2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды – вещества со столь малыми молекулами – необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления. Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания. Плотность воды (максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода – единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Большое поверхностное натяжение и когезия. Когезия – это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение – результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной (в идеале – форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды (7,6 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент. Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Вода непрерывно циркулирует на земном шаре, при этом ее общее количество остается неизменным.

Пото́к эне́ргии - это количество энергии, переносимое через некоторую произвольную площадку в единицу времени. Единицей измерения потока энергии является ватт, равный одному джоулю, делённому на секунду. Пирамиды энергетических потоков.

С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и 10% передается на следующий уровень. Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 - 5 звеньев.

Круговорот кислорода. Биогенное значение кислорода. Биохимические, анатомические и физиологические механизмы использования кислорода организмами. Резервный фонд круговорота кислорода, источники поступления кислорода в биосферу.

КРУГОВОРОТ КИСЛОРОДА, взаимообмен кислородом, осуществляемый между атмосферой и океанами, между процессами, происходящими в животных и растениях, и химическим горением. Основным источником возобновления кислорода на Земле является ФОТОСИНТЕЗ, процесс, происходящий в растениях, при котором происходит выделение кислорода. Растворенный в воде кислород поглощается водными формами жизни посредством ДЫХАНИЯ, процесса, жизненно-важного для всех форм жизни, кроме анаэробных бактерий. Этот химический элемент обладает высочайшим свойством к окислению, образуя множество окислов, как с металлами, так и с неметаллами. Именно поэтому многие металлы и неметаллы не встречаются в чистом виде, а только в виде руд, которые по своему составу являются различными окислами. Это - наиболее распространенный элемент Земли. Морская вода содержит его свыше 80%, а почти половина веса земной коры принадлежит кислороду. Такое высокое содержание кислорода стало возможным благодаря фотосинтезу. Зеленые растение под действием солнечного света превращают двуокись углерода и воду в углеводы и кислород. Его значение для жизни на Земле трудно переоценить. Все соединения этого элемента и он сам играют огромную роль в обмене веществ любого живого организма, от одноклеточных до многоклеточных. Почти все организмы получают энергию для своей жизнедеятельности благодаря участию кислорода в процессах окисления. Если процессы дыхания, горения и гниения уменьшают количество кислорода в атмосфере, то фотосинтез зеленых растений его активно пополняет. Поэтому таким важным для Земли является сохранение имеющейся площади зеленых насаждений.

В каждом цикле различают две части или два фонда:

Резервный фонд – большая масса медленно движущихся веществ, в основном небиологический компонент;

Подвижный, или обменный, фонд – меньший, но более активный, для которого характерен быстрый обмен между организмами и их непосредственным окружением. Для биосферы в целом все биогеохимические круговороты делят на круговороты газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и осадочный цикл с резервным фондом в земле.

Круговорот серы. Биологическое значение серы. Резервный фонд серы. Микробиологические процессы в круговороте серы. Антропогенная трансформация круговорота серы. Поступление серы в атмосферу. Проблема загрязнения атмосферы соединениями серы.

Круговорот серы охватывает воду, почву и атмосферу с осадками. Сера имеет важное биологическое значение, поскольку входит в состав широко распространенных в живой природе аминокислот, белков и других органических соединений. Сера содержится во всех организмах.

Сера химически активна и особенно легко соединяется при нагревании почти со всеми элементами. Сера попадает в атмосферу в виде:

Сероводорода (H2S – бесцветный, сильно ядовитый газ) при извержении вулканов, при разложении органических веществ в затапливаемых низинах и болотах;

Диоксида серы (SО2 – бесцветный удушливый газ) при извержении вулканов и частиц сульфатных солей из мельчайших брызг океанической воды.

С кислородом при температуре более 300о С сера образует оксиды: SO2 – сернистый ангидрид и SO3 – серный ангидрид. Они образуются в процессах сжигания топлива в котельных установках и являются источниками для образования кислых дождей.

В большом геологическом круговороте сера переносится с океана на материки с атмосферными осадками, а возвращается в океан со стоком. Одновременно ее запасы в атмосфере пополняются за счет вулканической деятельности. Основные резервы серы находятся в почве и отложениях. В обменном фонде главная роль принадлежит микроорганизмам, одни из которых восстановители, а другие – окислители.

В малом круговороте сульфаты поглощаются растениями, и затем по цепям питания серу получают животные. При разрушении остатков организмов образуется сероводород, который в дальнейшем окисляется или до элементарной серы, или до сульфитов, а частично улетучивается в атмосферу.

Для серы характерен обширный резервный фонд в земной коре и меньший - в атмосфере и гидросфере.

Круговорот серы.Около трети всех соединений серы и 99% диоксида серы, попадающих в атмосферу, имеют антропогенное происхождение. Сжигание серосодержащих углей и нефти для производства электроэнергии дает примерно две трети всех антропогенных выбросов диоксида серы в атмосферу. Оставшаяся треть выделяется во время таких технологических процессов, как переработка нефти, выплавка металлов из серосодержащих медных, свинцовых и цинковых руд.

Существуют три основных источника естественной эмиссии серы.

1. Процессы разрушения биосферы. С помощью анаэробных (действующих без участия кислорода) микроорганизмов происходят различные процессы разрушения органических веществ. Благодаря этому содержащаяся в них сера образует газообразные соединения. Вместе с тем определенные анаэробные бактерии извлекают из сульфатов, растворенных в естественных водах, кислород, в результате чего образуются сернистые газообразные соединения.3

Из указанных веществ сначала в атмосфере был обнаружен сероводород, а затем с развитием измерительных приборов и способов отбора проб воздуха удалось выделить ряд органических газообразных соединений серы. Наиболее важными источниками этих газов являются болота, зоны приливов и отливов у береговой линии морей, устья рек и некоторые почвы, содержащие большое количество органических веществ.

Поверхность моря также может содержать значительные количества сероводорода. В его возникновении принимают участие морские водоросли. Можно предположить, что выделение серы биологическим путем не превышает 30-40 млн т в год, что составляет около 1/3 всего выделяемого количества серы.

2. Вулканическая деятельность. При извержении вулкана в атмосферу наряду с большим количеством двуокиси серы попадают сероводород, сульфаты и элементарная сера. Эти соединения поступают главным образом в нижний слой - тропосферу, а при отдельных, большой силы извержениях наблюдается увеличение концентрации соединений серы и в более высоких слоях - в стратосфере. С извержением вулканов в атмосферу ежегодно в среднем попадает около 2 млн т серосодержащих соединений. Для тропосферы это количество незначительно по сравнению с биологическими выделениями, для стратосферы же извержения вулканов являются самым важным источником появления серы.

В результате деятельности человека в атмосферу попадают значительные количества соединений серы, главным образом в виде ее двуокиси. Среди источников этих соединений на первом месте стоит уголь, сжигаемый в зданиях и на электростанциях, который дает 70% антропогенных выбросов. Содержание серы (несколько процентов) в угле достаточно велико (особенно в буром угле). В процессе горения сера превращается в сернистый газ, а часть серы остается в золе в твердом состоянии. 4

Вода - это необходимое вещество в составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоёмов представляет источник атмосферной влаги; конденсация её вызывает осадки, с которыми в конце концов вода возвращается в океан. Этот процесс составляет большой круговорот воды. На поверхности Земного шара.

В пределах экосистем осуществляются процессы, усложняющие большой круговорот и обеспечивающие его биологически важную часть. В процессе перехвата растительность способствует испарению в атмосферу части осадков раньше, чем они достигнут поверхности земли.Вода осадков, достигшая почвы, просачивается в неё и либо образует одну из форм почвенной влаги, либо присоединяется к поверхностному стоку; частично почвенная влага может по капиллярам подняться на поверхность и испариться. Из более глубоких слоёв почвы влага всасывается корнями растений; часть её достигает листьев и транспирируется в атмосферу.

Эвапотранспирация - это суммарная отдача воды из экосистемы в атмосферу. Она включает как физически испаряемую воду, так и влагу, транспирируемую растениями. Уровень транспирации различен для разных видов и в разных ландшафтно-климатических зонах.

Если количество воды, просочившейся в почву, превышает её влагоёмкость, то она достигает уровня грунтовых вод и входит в их состав. Подземный сток связывает почвенную влагу с гидросферой.

Таким образом, для круговорота воды в пределах экосистем наиболее важны процессы перехвата, эвапотранспирации, инфильтрации и стока.

В целом круговорот воды характеризуется тем, что в отличие от углерода, азота и других элементов вода не накапливается и не связывается в живых организмах, а проходит через экосистемы почти без потерь; на формирование биомассы экосистемы используется лишь около 1 % воды, выпадающей с осадками.

И так, Малый круговорот имеет следующую структуру: испарение влаги с поверхности океана (водоема) - конденсация водяного пара - выпадение осадков на эту же водную поверхность океана (водоёма).

Большой круговорот - это круговорот воды между сушей и океаном (водоемом). Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока. Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды.

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения её в биохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

В биосфере Земли водяные массы постоянно перемещаются, образуя замкнутый цикл. Данный процесс получил название круговорот воды в природе, схема которого часто встречается в учебниках по естествознанию. Если вам необходимо написать доклад на тему «Гидрологический цикл в природе», то данный материал будет вам полезен, поможет глубже познать природу и ее свойства.

Основные понятия

Гидрологический цикл – это процесс регулярного перемещения жидкости в мировом пространстве, а его изучение позволило понять механизм действия: энергия воздействует на поверхность земли и океана, влага, нагреваясь, преобразуется в пар, молекулы которого поднимаются в атмосферу и концентрируются в виде облаков. Попадая в зоны с холодной температурой, молекулы конденсируются и выпадают вниз в виде осадков . Так под влиянием солнечной энергии и охлаждения процесс бесконечно повторяется.

Главные этапы и процессы

Как происходит круговорот воды в природе? Полный гидрологический цикл включает в себя несколько важных этапов:

  • испарение;
  • конденсация пара в атмосферных слоях;
  • выпадение его же в виде осадков на землю;
  • фильтрация через почву;
  • попадание жидкости в подземные потоки;
  • всасывание растениями жидкости из почвы;
  • участие в биохимических реакциях живых организмов.

Этапы круговорота иногда сводятся к минимуму:

  • вода испаряется;
  • концентрируется в атмосферных слоях;
  • выпадает в виде жидкой, твердой или парообразной субстанции.

Такой круговорот часто бывает над поверхностью большого водоема, например, океана. Гидрологический цикл кругообразный – это означает, что все этапы постоянно повторяются, обеспечивая таким образом непрерывное движение жидкости в природе.

Для него также характерны следующие процессы:

  • осадки – это выпадение воды на землю в виде дождя, снега, града и тумана;
  • перехват осадков – это процесс выпадения осадков не в почву или водоемы, а на деревья и другие растения. Такая влага сразу испаряется, не попадая в почву;
  • сток – это способ, с помощью которого вода передвигается по земле;
  • инфильтрация – это попадание жидкости внутрь почвы и ее фильтрация;
  • подземные потоки — это потоки под землей, которые располагаются в зоне аэрации;
  • испарения воды – это переход молекул из жидкого состояния в парообразное;
  • сублимация — переход молекул из твердого состояния в парообразное;
  • отложение – переход молекул из парообразного состояния в твердое;
  • адвекция – это перемещение водяных молекул (в любом состоянии) сквозь ;
  • конденсация – формирование пара в тучи и облака;
  • испарение – перемещение паров под воздействием солнечной энергии из почвы и растений в атмосферу;
  • просачивание – перемещение воды сквозь почву под действием .

Гидрологический цикл – это сложный процесс, который занимает от нескольких суток до нескольких лет. Океан полностью обновляется за 3200 лет – это значит, что вся вода в нем испаряется и возвращается обратно за тот же срок.

Интересно! Если всю воду, которая ежегодно испаряется, распределить равномерным слоем по всей поверхности , получится слой толщиной в метр!

Гидрологический цикл

Разновидности циклов

Ученые разделяют гидрологический цикл на несколько типов, по их масштабу и территории. Существует 5 основных типов:

  1. Мировой круговорот воды – жидкость из океанов испаряется и выпадает в форме осадков над материковой сушей, а позже с помощью рек и стоков возвращается в океан;
  2. Малый – жидкость с поверхности моря, испарившаяся под действием солнца, возвращается обратно осадками;
  3. Внутриконтинентальный цикл — происходит только над сушей;
  4. Геологический цикл осуществляется внутри суши, когда океан сообщается с подземными потоками;
  5. Глобальный –открытый, включающий в себя все типы круговоротов.

Как происходит круговорот воды в природе и каковы особенности каждого цикла. Это уникальное природное явление, благодаря которому все живое на Земле имеет доступ к питательным веществам.

Интересно! За год с поверхности Земли испаряется до 520 000 жидкости и выпадает обратно в виде осадков.

Мировой круговорот в природе

Значение

Почему знать гидрологический цикл и его принципы действия действительно важно? Значение круговорота в природе сложно недооценить, потому что он:

  • является связующим звеном для всей гидросферы;
  • жизненно важные вещества все время перемещаются по Земле, достигая нужных мест, питают почву, растения и микроорганизмы;
  • очищает и фильтрует мировой океан;
  • регулирует климат.

Нерациональное использование воды может привести к нарушению гидрологического цикла и стать причиной возникновения непоправимых последствий для всей Земли и ее жителей.

Как объяснить данное понятие детям

Для детей объяснить несложно, используя простые понятия или преподнося все в виде сказки. Можно показать им простой схематический рисунок и рассказать в доступной форме о каждом изображенном процессе:

  1. Вода, которую мы пьем, употребляют также растения с животными, ведь она содержит в себе много полезных веществ;
  2. Вода живет в океане и реках, а также под землей;
  3. Солнце сильно греет океан, и он начинает сердиться. Когда вода в чайнике долго стоит на огне, она тоже сердится и выходит через носик. Так и часть жидкости в океане превращается в пар;
  4. В небе пар чувствует себя одиноко и сбивается в кучки. И получаются облака и тучи, которые летают над землей, гонимые ветром;
  5. Солнышко ночью не греет, поэтому пар перестает сердиться и снова превращается в жидкость, которая выпадает из тучи на землю, где пополняет реки, впадающие в океан;
  6. Все повторяется сначала.

Вывод

Объясняя круговорот воды в природе для детей, не стоит забывать о наглядных пособиях и использовать кипящий чайник, кубики льда и пар. Самое важное – показать, что жидкость — важный ресурс, и к ней необходимо относится бережно. В итоге, чтобы понять, усвоили дети урок или нет, стоит задать им вопрос «Что такое круговорот воды в мире?» и послушать их ответы. Если вы все хорошо объяснили, то получите правильный ответ.

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»