Параллельный параметрический и последовательный стабилизаторы напряжения. Расчет и анализ параметрического стабилизатора напряжения (MS EXCEL) Расчет параметрического стабилизатора напряжения на транзисторе

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

Калькулятор мощности стабилизатора напряжения
Для правильного выбора мощности стабилизатора, необходимо определить сумму мощностей всех потребителей, нуждающихся одновременно в снабжении электроэнергией, учитывая пусковые токи приборов.

ВАЖНО:
Калькулятор мощности позволяет расчитать силу потребляемого тока популярных бытовых устройств и, предполагаемую мощность стабилизатора напряжения. Электродвигатели имеют пусковые токи гораздо выше номинальных. Рабочая мощность стабилизатора при использовании асинхронных двигателей, компрессоров, насосов должна в 3-5 раз превышать номинальную мощность потребителей.

Онлайн калькулятор мощности

Онлайн калькулятор мощности стабилизатора напряжения

Используйте онлайн калькулятор мощности стабилизатора напряжения для расчета потребления тока каждого бытового прибора. Для аппаратуры, Вы можете посмотреть потребление энергии в паспорте, а так же эта информация дублируется и на самом приборе (на задней стенке прибора). Так же необходимо учитывать различные типы нагрузки. Нагрузка существует как активная, так и реактивная.

Что это такое?

Онлайн калькулятор мощности позволяет правильно учесть активную нагрузку. Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт. Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много - почти вся электронная и бытовая техника. Они имеют полную мощность и активную.

Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах). Полная мощность (вольт-амперы) и активная мощность (ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки, часто указывают их активную потребляемую мощность в ваттах и cos ф. Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Расчет мощности стабилизатора напряжения
Расчет мощности стабилизатора напряжения очень ответственное дело и подходить к этому надо внимательно, иначе вы рискуете оказаться в ситуации, когда стабилизатор напряжения будет все время отключать ваших потребителей (так работает защита по току).

Расчет мощности стабилизатора напряжения

Сделаем расчет мощности стабилизатора напряжения на примере.

Пример: если на дрели написано "700 Вт" и " cos ф = 0,7", это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи. Многие приборы в момент пуска могут потреблять энергии в несколько раз больше, чем их номинальная мощность. К таким приборам относятся все устройства, содержащие двигатель.

Например, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите "щадящий" режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Параметрическим стабилизатором называется устройство, в котором выходное напряжение или ток поддерживается на уровне заданного значения за счет параметров радиоэлектронных элементов. В них используются нелинейные свойства характеристик (вольтамперных, ампервольтовых, ом-градусных, вебер-амперных, вольт-секундных и др.). В качестве примера таких приборов можно назвать такие электронные элементы, как стабилитроны, терморезисторы, дроссели насыщения и т.д.

Параметрические стабилизаторы могут стабилизировать постоянное или переменное напряжение, однако и в том и в другом случае они обладают достаточно плохими параметрами. В старой аппаратуре они применялись из-за простой, и, следовательно, дешевой схемы. В настоящее время практически вытеснены интегральными компенсационными стабилизаторами или источниками бесперебойного питания. Тем не менее, для того, чтобы понять, как работают компенсационные и напряжения необходимо знать принципы работы параметрического стабилизатора.

В качестве примера параметрических стабилизаторов рассмотрим стабилизаторы напряжения. В них обычно используются полупроводниковые стабилитроны, которые работают в области электрического пробоя на обратном участке вольтамперной характеристики. Поэтому стабилитрон включается в обратном направлении. Выход из строя данного диода не происходит из-за того, что ток, протекающий через диод, ограничивается внешним резистором. Классическая схема параметрического стабилизатора напряжения на стабилитроне приведена на рисунке 1.


Рисунок 1. Cхема стабилизатора напряжения на стабилитроне

Мы обсудим в следующей статье, а сейчас подробнее рассмотрим параметры стабилитрона. Пример его вольтамперной характеристики приведен на рисунке 2


Рисунок 2. Вольтамперная характеристика стабилитрона

В параметрах стабилитрона приводится минимальный ток стабилизации, при котором начинается пробой и максимальный ток стабилизации, при котором еще не происходит разрушение pn-перехода за счет его теплового нагрева. Основными параметрами стабилитрона являются:

  • напряжение стабилизации U ст и пределы его изменения ΔU ст;
  • номинальный ток I ном и пределы его изменения I ст min ... I ст max ;
  • максимальная допустимая мощность рассеивания P доп = U ст ×I ст max ;
  • дифференциальное сопротивление на рабочем участке r d ;
  • температурный коэффициент напряжения (ТКН) α T .

Наиболее важным параметром стабилитрона является его напряжение стабилизации . Стабилитроны производят на напряжение от 3 до 400 В. Оно зависит от толщины p-n перехода. При этом в зависимости от толщины перехода пробой бывает лавинным или туннельным. Если требуется стабилизировать напряжение меньше трех вольт, то применяются стабисторы. У них для стабилизации используется прямая ветвь амплитудно-частотной характеристики. Поэтому схема параметрического стабилизатора напряжения меняется. Она приведена на рисунке 3.


Рисунок 3. Схема параметрического стабилизатора на стабисторе

Дифференциальное сопротивление стабилитрона обычно определяется омическим сопротивлением полупроводника. По вольтамперной характеристике его можно определить следующим образом:

(1)

Именно дифференциальное сопротивление стабилитрона определяет зависимость выходного напряжения параметрического стабилизатора от тока потребления нагрузки.

Не менее важным параметром является температурный коэффициент напряжения . Полупроводниковые диоды очень чувствительны к температуре и их вольтамперная характеристика смещается при нагреве. Пример изменения вольтамперной характеристики стабилитрона приведен на рисунке 4.


Рисунок 4. Изменение вольтамперной характеристики под воздействием температуры

Для полупроводникового диода, который используется в качестве стабилизатора, ТКН α T = 0,1% на градус Цельсия. Для прецизионных стабилизаторов напряжения это слишком большая величина. В то же самое время, отрицательный или положительный будет ТКН зависит от типа пробоя. При напряжении стабилизации меньше 6,2 В он отрицательный, а при напряжении стабилизации больше этого значения — положительный. Поэтому прецизионные стабилитроны выполняются на это напряжение. При несколько большем напряжении можно воспользоваться прямой ветвью вольтамперной характеристики, где падение напряжения уменьшается с ростом температуры. Если стабилитроны включить встречно, как это показано на рисунке 5, то зависимость напряжения стабилизации от температуры можно значительно снизить (например, отечественный стабилитрон КС170).


Рисунок 5. Внутренняя схема прецизионного стабилитрона

Условно-графическое изображение прецизионного стабилитрона приведено на рисунке 6.


Рисунок 6. Условно-графическое изображение прецизионного стабилитрона

В схеме включения данного стабилитрона можно не опасаться неправильного включения, т.к. симметричные стабилитроны обладают одинаковым напряжением стабилизации.

До недавнего времени для питания маломощных каскадов радиоэлектронной аппаратуры использовались параметрические стабилизаторы напряжения. Сейчас намного дешевле и эффективней применить малошумящие компенсационные стабилизаторы, подобные ADP3330 или ADM7154. Тем не менее в ряде уже производящейся аппаратуры уже применены параметрические стабилизаторы, поэтому необходимо уметь их расчитывать. Наиболее распространенная схема параметрического стабилизатора приведена на рисунке 1.


Рисунок 1. Схема параметрического стабилизатора

На данном рисунке приведена схема стабилизатора положительного напряжения. Если требуется стабилизировать отрицательное напряжение, то стабилитрон ставится в противоположном направлении. Напряжение стабилизации полностью определяется типом стабилитрона.

Расчет стабилизатора таким образом сводится к расчету резистора R 0 . Прежде чем начинать его расчет следует определиться с основным дестабилизирующим фактором:

  • входное напряжение;
  • ток потребления.

Нестабильное входное напряжение при стабильном токе потребления присутствует обычно в источниках опорного напряжения для аналого-цифровых и цифро-аналоговых преобразователей. Для параметрического стабилизатора, питающего определенный узел аппаратуры, приходится учитывать изменение выходного тока. В приведенной на рисунке 1 схеме при постоянном входном напряжении ток I всегда будет стабильным. Если нагрузка будет потреблять меньше тока, то его излишки уйдут в стабилитрон.

I = I ст + I н (1)

Поэтому максимальный ток нагрузки не может превышать максимальный ток стабилитрона. Если входное напряжение не будет постоянным (а эта ситуация очень распространена), то допустимый диапазон изменения тока нагрузки дополнительно уменьшается. Сопротивление резистора R 0 расчитывается по закону Ома. При расчете используется минимальное значение входного напряжения.

(2)

Максимальный диапазон изменения входного напряжения можно определить по закону Киргофа. После небольших преобразований его можно свести к следующей формуле:


(3)

Таким образом расчет параметрического стабилизатора достаточно прост. Именно это и составляет его привлекательность. Однако при выборе типа стабилизатора следует иметь в виду то обстоятельство, что стабилитрон (но не стабистор) является источником шума. Поэтому описанный стабилизатор не следует применять в ответственных блоках радиоаппаратуры. Еще раз подчеркну, что при проектировании новой аппаратуры в качестве вторичного источника питания лучше подойдут малогабаритные малошумящие компенсационные стабилизаторы, такие как ADP7142.

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)

Для многих электрических схем и цепей достаточно простого блока питания, который не имеет стабилизированной выдачи напряжения. Такие источники чаще всего включают в себя низковольтный трансформатор, диодный выпрямительный мост, и конденсатор, выступающий в виде фильтра.

Напряжение на выходе блока питания имеет зависимость от числа витков вторичной катушки трансформатора. Обычно напряжение бытовой сети имеет посредственную стабильность, и сеть не выдает нужные 220 вольт. Величина напряжения может плавать в интервале от 200 до 235 В. Значит, и напряжение на выходе трансформатора также не будет стабильным, а вместо стандартных 12 В получиться от 10 до 14 вольт.

Работа схемы стабилизатора

Электрические устройства, которые не чувствительны небольшим перепадам напряжения питания могут обойтись обычным блоком питания. А более капризные приборы уже не смогут работать без стабильного питания, и могут попросту сгореть. Поэтому есть необходимость во вспомогательной схеме выравнивания напряжения на выходе.

Рассмотрим схему работы , выравнивающего постоянное напряжение, на транзисторе и стабилитроне, который играет роль основного элемента, определяет, выравнивает напряжение на выходе блока питания.

Перейдем к конкретному рассмотрению электрической схемы обычного стабилизатора для выравнивания постоянного напряжения.

  • Имеется трансформатор для понижения напряжения с переменным напряжением на выходе 12 В.
  • Такое напряжение поступает на вход схемы, а конкретнее, на диодный выпрямительный мост, а также фильтр, выполненный на конденсаторе.
  • Выпрямитель, выполненный на основе диодного моста, преобразует переменный ток в постоянный, однако получается скачкообразная величина напряжения.
  • Полупроводниковые диоды должны работать на наибольшей силе тока с резервом 25%. Такой ток может создавать блок питания.
  • Обратное напряжение не должно снижаться меньше, чем выходное напряжение.
  • Конденсатор, играющий роль своеобразного фильтра, выравнивает эти перепады питания, преобразуя форму напряжения в практически идеальную форму графика. Емкость конденсатора должна находиться в пределах 1-10 тысяч мкФ. Напряжение должно быть тоже выше входной величины.

Нельзя забывать о следующем эффекте, что после электролитического конденсатора (фильтра) и диодного выпрямительного моста переменное напряжение повышается на величину около 18%. А значит, что в результате получается не 12 В на выходе, а около 14,5 В.

Действие стабилитрона

Следующим этапом работы является работа стабилитрона для стабилизации постоянного напряжения в конструкции стабилизатора. Он является главным функциональным звеном. Нельзя забывать, что стабилитроны могут в определенных пределах выдерживать стабильность на некотором постоянном напряжении при обратном подключении. Если подать напряжение на стабилитрон от нуля до стабильного значения, то оно будет повышаться.

Когда оно дойдет до стабильного уровня, то останется постоянным, с небольшим возрастанием. При этом будет увеличиваться сила тока, проходящего по нему.

В рассматриваемой схеме обычного стабилизатора, у которого выходное напряжение должно быть 12 В, стабилитрон определен для величины напряжения 12,6 В, так как 0,6 В будет являться потерей напряжения на переходе транзистора эмиттер – база. Выходное напряжение на приборе будет именно 12 В. А так как мы устанавливаем стабилитрон на величину 13 В, на выходе блока получится примерно 12,4 вольта.

Стабилитрон требует ограничения тока, предохраняющего его от излишнего нагревания. Судя по схеме, эту функцию осуществляет сопротивление R1. Оно включено по последовательной схеме со стабилитроном VD2. Другой конденсатор, выполняющий функцию фильтра, подключен параллельно стабилитрону. Он должен выравнивать возникающие импульсы напряжения. Хотя можно вполне обойтись и без него.

На схеме изображен транзистор VТ1, подключенный с общим коллектором. Такие схемы характеризуются значительным усилением тока, однако при этом по напряжению усиления нет. Отсюда следует, что на выходе транзистора образуется постоянное напряжение, имеющееся на входе. Так как эмиттерный переход забирает на себя 0,6 В, то на выходе транзистора получается всего 12,4 В.

Для того, чтобы транзистор стал открываться, необходим резистор для образования смещения. Такую функцию выполняет сопротивление R1. Если изменять его величину, то можно изменять выходной ток транзистора, а, следовательно, и выходной ток стабилизатора. В качестве эксперимента можно вместо резистора R1 подключить переменный резистор на 47 кОм. Регулируя его можно изменять выходную силу тока блока питания.

В конце схемы стабилизатора напряжения подключен еще один маленький конденсатор электролитического типа С3, который выравнивает импульсы напряжения на выходе стабилизированного устройства. К нему припаян по параллельной схеме резистор R2, который замыкает эмиттер VТ1 на отрицательный полюс схемы.

Заключение

Эта схема наиболее простая, включает в себя наименьшее количество элементов, создает стабильное напряжение на выходе. Для работы множества электрических устройств этого стабилизатора вполне достаточно. Такой транзистор и стабилитрон рассчитаны на наибольшую силу тока 8 А. Значит, что для подобного тока необходим охлаждающий радиатор, отводящий тепло от полупроводников.

Для чаще всего применяются стабилитроны, транзисторы и стабисторы. Они имеют пониженный КПД, поэтому используются только в маломощных схемах. Чаще всего они применяются в качестве источников основного напряжения в схемах компенсации стабилизаторов напряжения. Такие параметрические стабилизаторы бывают мостовыми, многокаскадными и однокаскадными. Это наиболее простые схемы стабилизаторов, построенных на основе стабилитрона и других полупроводниковых элементов.

Содержание:

В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения. В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения. В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми.

Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования. Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению. Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех. Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах.

Схема параметрического стабилизатора

Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.

Стандартная схема состоит из , который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.

Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD. Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1. Принцип работы схемы дает возможность для расчетов всех необходимых параметров.

Расчет параметрического стабилизатора

Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.

Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс - максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.мин - минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд - дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере. Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.

В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом. После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора. Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.

На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх-Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн. В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин. В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.

Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 - 9) / (0,015 + 0,01) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом. Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт. То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.

После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх-ΔUвх-Uвых) /Rо - (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 - 1,44 - 9) х 103/ 220 - (10 + 2) = 6 мА. Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх-Uвых) /Rо - (Iн-ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 - 9) · 103/ 220 - (10 - 2) = 23 мА. Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или Rо. В некоторых случаях требуется замена стабилитрона.

Параметрический стабилизатор напряжения на стабилитроне

Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.

В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.

Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток. Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя. Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.

В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.

В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:

  • Напряжение стабилизации - Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
  • Максимально допустимый постоянный ток стабилизации - Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
  • Минимальный ток стабилизации - Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
  • Дифференциальное сопротивление стабилитрона - rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).

Параметрический стабилизатор на транзисторе

Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне. В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока. То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.

Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.

Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min. Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения. Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»