Керамические материалы и изделия. Общие сведения о керамике Керамические материалы виды основные свойства

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

Керамическими называют каменные изделия, получаемые из минерального сырья путем его формования и обжига при высоких температурах, в результате которого сырье необратимо переходит в прочное, водостойкое состояние.

Термин «керамика» происходит от греческого слова «керамейя», которым в Древней Греции называли искусство изготовления изделий из глины. Керамика, пожалуй, является первым искусственным строительным материалом, полученным человечеством. Возраст керамического кирпича как строительного материала превышает 5000 лет.

В современном строительстве керамические изделия применяют почти во всех конструктивных элементах зданий и сооружений.

По назначению керамические материалы и изделия делят на следующие виды:

  • стеновые изделия (кирпич, пустотелые камни и блоки);
  • кровельные изделия (черепица);
  • элементы перекрытий;
  • изделия для облицовки фасадов (лицевой кирпич, малогабаритные и другие плитки, наборные панно, архитектурно-художественные детали);
  • изделия для внутренней облицовки стен (глазурованные плитки и фасонные детали к ним - карнизы, уголки, пояски);
  • заполнители для легких бетонов (керамзит, аглопорит);
  • теплоизоляционные изделия (перлитокерамика, ячеистая керамика, диатомитовые и др.);
  • санитарно-технические изделия (умывальные столы, ванны, унитазы);
  • плитка для пола;
  • дорожный кирпич;
  • кислотоупорные изделия (кирпич, плитки, трубы и фасонные части к ним);
  • огнеупоры;
  • изделия для подземных коммуникаций (канализационные и дренажные трубы).

По структуре керамические материалы подразделяются на пористые , имеющие водопоглощение по массе более 5 %, в среднем 8…20 % (стеновые, кровельные и облицовочные материалы и др.), и плотные , имеющие водопоглощение по массе менее 5 % (плитки для пола, дорожный кирпич, некоторые виды труб и др.).

2. Сырьевые материалы

Сырьевые компоненты для производства керамических материалов подразделяются на пластичные и непластичные . В качестве пластичных компонентов используются глины, в качестве непластичных - добавки, которые вводятся для регулирования различных свойств как формовочной массы, так и готовых изделий.

ГЛИНИСТЫЕ МАТЕРИАЛЫ

Глина - это осадочная горная порода тонкоземлистого строения, способная при смешивании с водой образовывать пластичное тесто, которое после обжига необратимо переходит в камневидное состояние.

Важным свойством глин является их гранулометрический (зерновой) состав. В зависимости от размера частиц в глину входят различные фракции. Глинистые вещества - это частицы чешуйчатой формы, которые имеют размер менее 0,005 мм. Частицы пыли имеют размер от 0,005 до 0,16 мм, песка - от 0,16 до 2 мм, более крупные частицы называются каменистыми включениями. Соотношение между входящими в состав глин фракциями влияет на основные свойства глин (будут рассмотрены ниже) как сырья для производства керамических материалов.

Другая важная характеристика глин - химический состав, куда входят различные глинистые минералы, основным из которых является каолинит Al2O3 2SiO2 2H2O. Помимо этого в глины могут входить родственные ему минералы: галлуазит Al2O3 2SiO2 4H2O, монтмориллонит Al2O3 4SiO2 n H2O и др. В качестве примесей в глине могут находиться: кристаллический кремнезем SiO2, карбонаты кальция CaCО3, соединения железа Fe(OH)2, Fe2O3, оксиды щелочных металлов (Na2O, K2O) и др.

СВОЙСТВА ГЛИНИСТОГО СЫРЬЯ

Глина, замешанная с определенным количеством воды, образует глиняное тесто, обладающее рядом физических, физико-химических и химических свойств, в совокупности называемых керамическими .

Пластичность - свойство глиняного теста деформироваться под нагрузкой без образования трещин и разрывов и сохранять приданную форму после снятия нагрузки.

При смачивании сухой глины молекулы воды втягиваются между чешуйчатыми частицами глинистого вещества, расклинивают их, образуют на поверхности частиц гидратную оболочку и вызывают набухание глин. Гидратные оболочки выполняют роль смазки, облегчающей скольжение частиц глины.

Пластичность зависит от содержания в глине глинистого вещества и от размеров частиц. Чем выше содержание глинистого вещества и мельче частицы, тем более пластична глина. По степени пластичности глины делятся: на высокопластичные, водопотребность которых более 28 %; среднепластичные, имеющие водопотребность 20…28 %, и малопластичные с водопотребностью менее 20 %.

Связанность - усилие, необходимое для разъединения частиц глины. Высокой связанностью обладают глины, содержащие повышенное количество глинистых фракций.

Связующая способность - способность глин в увлажненном состоянии легко перемешиваться с непластичными материалами и при высыхании связывать их в достаточно прочное изделие - сырец.

Воздушная усадка - уменьшение линейных размеров и объема глины при высыхании. В процессе сушки вода испаряется, толщина водных оболочек вокруг глинистых частиц сокращается и отдельные частицы глины сближаются между собой. Воздушная усадка связана с пластичностью глин: чем выше пластичность, тем больше воздушная усадка. Высокопластичные глины имеют воздушную усадку 10…15 %; среднепластичные - 7…10 % и малопластичные - 5…7 %.

Огневая усадка - уменьшение линейных размеров и объема глины при обжиге. В процессе обжига наиболее легкоплавкие соединения глины переходят в расплав, который обволакивает нерасплавившиеся частицы, заполняет промежутки между ними и за счет действия сил поверхностного натяжения жидкой фазы вызывает сближение частиц. Огневая усадка составляет 2…6 %.

Полная усадка - сумма воздушной и огневой усадок.

НЕПЛАСТИЧНЫЕ МАТЕРИАЛЫ

Как уже отмечалось выше, эти материалы вводятся в качестве добавок для регулирования свойств как глинистого сырья, так и готовых изделий.

Отощающие добавки - вводятся для снижения пластичности глин и, как следствие, для уменьшения воздушной усадки. В качестве отощающих добавок используют шамот, дегидратированную глину, золу ТЭС, измельченные гранулированные шлаки, природный песок.

Шамот - предварительно обожженная и измельченная до требуемых размеров (менее 2 мм) глина. Дегидратированная глина - это глина, обожженная при температуре 500…600 °С. При этой температуре из глинистых минералов удаляется химически связанная вода и глина необратимо теряет свойства пластичности.

Пластифицирующие добавки - вводятся для улучшения пластичности глин. Для этих целей используют высокопластичные глины, поверхностноактивные вещества, электролиты.

Выгорающие добавки - вводятся в формовочную массу с целью получения высокопористых изделий: древесные опилки, молотый уголь, торф, лузга и др. Эти добавки одновременно являются и отощающими.

Плавни - вводятся с целью снижения температуры спекания и, как следствие, экономии топливно-энергетических ресурсов. Под спеканием подразумевается появление частичного расплава сырьевой смеси в процессе обжига. В качестве плавней используются полевые шпаты, доломит, магнезит и др.

Для придания повышенной стойкости к внешним воздействиям, водонепроницаемости и определенного декоративного вида поверхность некоторых керамических изделий покрывают глазурью или ангобом.

Стекловидный слой глазури, нанесенный на поверхность керамического материала, закрепляют обжигом. Глазури могут быть прозрачными и непрозрачными различного цвета. Главными сырьевыми компонентами глазури являются кварцевый песок, каолин, полевой шпат, соли щелочных и щелочноземельных металлов, различные оксиды и др.

Ангоб изготовляют из белой или цветной глины и наносят тонким слоем на поверхность еще не обожженного изделия. В отличие от глазури ангоб при обжиге не плавится, поэтому поверхность получается матовой. По своим свойствам ангоб должен быть близок к основному черепку.

3. Общая схема производства керамических изделий

Керамические материалы и изделия, которые выпускает промышленность, имеют разнообразные размеры, форму, физико-механические свойства и различное назначение, но основные этапы технологического процесса их производства примерно одинаковы и складываются из добычи сырьевых материалов, их транспортировки на завод, подготовки сырьевой массы, формования изделия (сырца), сушки и обжига.

ДОБЫЧА И ДОСТАВКА ГЛИНЫ

Глину для производства керамических материалов и изделий добывают в карьерах, обычно расположенных в непосредственной близости от завода. Для добычи используют одно- или многоковшовые экскаваторы, возможно также применение средств гидромеханизации. На завод глину доставляют по рельсовым путям в вагонетках с опрокидывающимся кузовом, автосамосвалами, ленточными транспортерами, вагонетками канатной дороги и другими видами транспорта.

ПОДГОТОВКА СЫРЬЕВОЙ МАССЫ

Добытая в карьере и доставленная на завод глина в естественном состоянии обычно непригодна для формования изделий. Необходимо разрушить природную структуру глины, удалить из нее вредные примеси, измельчить или убрать крупные включения, смешать глину с добавками, а также увлажнить ее, чтобы получить удобоформуемую массу. Для этой цели используют различные механизмы: вальцы, дезинтеграторы, бегуны, глинорезки, глиномялки, мешалки и др. Эти механизмы будут рассмотрены ниже.

Глину обрабатывают полусухим, пластическим и мокрым способами. Выбор того или иного способа зависит от свойств сырьевых материалов, состава керамических масс и способа формования изделий, а также от их размеров и назначения.

При полусухом (сухом) способе сырьевые материалы высушивают, дробят, размалывают и тщательно перемешивают. Сушат глину обычно в сушильных барабанах, дробят и размалывают в бегунах сухого помола, дезинтеграторах или шаровых мельницах, а смешивают в лопастных мешалках. Влажность пресспорошка составляет 8…12 % (4…6 %). Увлажняют пресспорошок водой или паром.

Полусухой способ применяют в производстве строительного кирпича полусухого прессования, плиток для полов, облицовочных плиток и др.

При пластическом способе сырьевые материалы смешивают при естественной влажности или с добавлением воды до получения глиняного теста влажностью 18…25 %. Для измельчения и переработки сырьевых материалов применяют вальцы и бегуны различных типов, а для перемешивания - глиномешалки.

Пластический способ подготовки сырьевой смеси широко применяют в производстве керамического кирпича пластического формования, керамических камней, черепицы, труб и других видов строительной керамики.

При мокром (шликерном) способе сырьевые материалы предварительно измельчают в порошок, а затем тщательно смешивают в присутствии большого количества (более 40 %) воды, получая однородную текучую массу (шликер). Этот способ применяют при производстве фарфоровых и фаянсовых изделий, облицовочных плиток и др.

ФОРМИРОВАНИЕ ИЗДЕЛИЙ

Формуют керамические изделия различными способами: пластическим, полусухим, сухим и мокрым. Выбор способа формования зависит от вида изделий, а также от состава и физико-механических свойств сырья.

Пластический способ формования является наиболее распространенным в производстве обыкновенного и пустотелого кирпича, керамических камней и блоков разного назначения, черепицы, облицовочных плит и других изделий. При этом способе формования подготовленную глиняную массу влажностью 18…25 % направляют в приемный бункер ленточного пресса. При помощи шнека масса

дополнительно перемешивается, уплотняется и выдавливается в виде бруса через выходное отверстие пресса, снабженного сменным мундштуком. Меняя мундштук, можно получать брус различной формы и размеров. Так, например, при формовании кирпича он имеет прямоугольное сечение. Непрерывно выходящий из пресса брус разрезается на отдельные части в соответствии с размерами изготовляемых изделий автоматическим резательным устройством. Современные ленточные прессы снабжены вакуумными камерами, в которых из глиняной массы частично удаляется воздух. Вакуумирование массы повышает ее пластичность и уменьшает формовочную влажность, сокращает длительность сушки сырца и одновременно повышает его прочность.

Полусухой способ формования получил широкое распространение на современных заводах при производстве облицовочных плиток, плиток для полов и других тонкостенных керамических изделий. Этим способом можно изготовлять кирпич и другие изделия из малопластичных глин, что расширяет сырьевую базу производства изделий строительной керамики. Кроме того, существенное преимущество полусухого способа формования по сравнению с пластическим - применение глиняной массы с меньшей влажностью (8…12 %), что значительно сокращает или даже исключает сушку сырца.

При полусухом способе каждое изделие формуют отдельно на высокопроизводительных прессах различной конструкции, обеспечивающих двустороннее прессование в формах глиняного порошка под давлением более 15 МПа.

Сырец полусухого прессования имеет четкую форму, точные размеры, прочные углы и ребра. Прочность его вполне достаточна для последующей погрузки и транспортирования на сушку и обжиг.

Сухой способ формования применяют главным образом для изготовления плотных керамических изделий, например, плиток для полов, дорожного кирпича. Сырьевой массой для прессования изделий служит глиняный порошок влажностью от 4 до 6 %. Отформованный сырец не требует сушки, что экономит топливно-энергетические ресурсы.

Мокрый способ формования применяют для изготовления санитарно-технического фаянса, мозаичной плитки и др. При этом способе глиняную массу влажностью более 40 % заливают в специальные пористые формы.

СУШКА ИЗДЕЛИЙ

Отформованные изделия (сырец) необходимо сушить, чтобы снизить их влажность до 8…10 %. За счет сушки повышается прочность сырца, а также предотвращается растрескивание и деформация его в процессе обжига. Сушка может быть естественной (в сушильных сараях) и искусственной (в специальных сушилках).

Естественная сушка не требует затрат топлива, но продолжается очень долго (10…15 сут) и зависит от температуры и влажности окружающего воздуха. Кроме того, для естественной сушки требуются помещения с большой площадью. В настоящее время на крупных заводах, как правило, производят искусственную сушку сырца в сушилках периодического или непрерывного действия.

Сушилки периодического действия представляют собой отдельные камеры, в которых на стеллажных полках размещают сырец. Подают сырец в камеры на тележках. В камерных сушилках все операции по загрузке, сушке и выгрузке сырца повторяются через определенные промежутки времени.

Сушилки непрерывного действия представляют собой туннели, в которых сырец, уложенный на вагонетках, постепенно проходит различные зоны по температуре и влажности и высушивается.

Сушат сырец в камерных и туннельных сушилках по режиму, выбранному для данного вида изделия, с учетом использованного сырья. В качестве теплоносителя в сушилках применяют дымовые газы обжигательных печей, а также газы, получаемые в специальных топках. Тонкую керамику сушат горячим воздухом из калориферов. Длительность искусственной сушки сырца составляет от одних до трех суток.

ОБЖИГ ИЗДЕЛИЙ

Обжиг является завершающим этапом технологического процесса производства керамических изделий. Процесс обжига можно условно разделить на три периода: прогрев сырца, собственно обжиг и охлаждение обожженных изделий.

В процессе высокотемпературного обжига глина претерпевает сложные физико-химические изменения.

При плавном подъеме температуры до 100…120 °С из глины удаляются остатки свободной влаги и керамическая масса становится непластичной, но если добавить воду, пластические свойства массы восстанавливаются. С повышением температуры до 500…700 °С выгорают органические примеси и из глинистых минералов удаляется химически связанная вода, при этом керамическая масса безвозвратно теряет свойство пластичности. При температуре 700…900 °С происходит разложение безводных глинистых минералов и образуется аморфная смесь глинозема Al2O3 и кремнезема SiO2. При дальнейшем повышении температуры до 1000…1300 °С идут реакции в твердой фазе и образуются искусственные минералы, например силлиманит (Al2O3SiO2) и муллит (3Al2O32SiO2). Одновременно с этим наиболее легкоплавкие соединения керамической массы переходят в расплав, создавая некоторое количество жидкой фазы. Расплав обволакивает нерасплавившиеся частицы, заполняет пустоты между ними и, обладая силой поверхностного натяжения, стягивает частицы. После остывания образуется твердый камнеподобный черепок.

Максимальная температура обжига керамических изделий зависит от состава глин. Обжиг изделий из легкоплавких глин производят при температуре 900…1000 °С, из тугоплавких и огнеупорных - при температуре 1200…1400 °С.

Керамические изделия обжигаются в печах периодического или непрерывного действия с использованием твердого (уголь), жидкого (мазут) или газообразного топлива.

Печи периодического действия представляют из себя камеры, в которые загружаются на стеллажах отформованные и высушенные изделия, после чего начинается плавный подъем температуры, которая доводится до требуемого максимума, затем происходит выдержка изделий при максимальной температуре и плавное ее снижение.

Печи непрерывного действия имеют различную конструкцию. Кольцевые печи имеют обжигательный канал эллипсовидной формы, перекрытый полуциркулярным сводом. Обжигаемые изделия загружаются в канал и остаются неподвижными, а температурные зоны перемещаются относительно обжигаемого материала. Туннельные печи имеют прямолинейный канал, по которому медленно перемещаются вагонетки с уложенными на них изделиями, которые последовательно проходят зоны подогрева, обжига и охлаждения.

В щелевых печах керамические изделия, уложенные в один ряд по высоте, медленно движутся в обжиговом канале по роликовому или иному конвейеру. В таких печах обеспечивается равномерность обжига, сокращается его продолжительность и уменьшается расход топлива.

СВОЙСТВА ОСНОВНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Стеновые керамические изделия предназначены для кладки и облицовки несущих и самонесущих стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков. Их изготовляют в виде правильного параллелепипеда. В зависимости от размеров их подразделяют на виды, указанные в табл. 1. Кирпич изготавливают полнотелым и пустотелым, камень - только пустотелым. Пустоты в изделиях могут быть сквозными или несквозными, располагаться они могут перпендикулярно (вертикальные) или параллельно постели (горизонтальные). По способу формования изделия стеновой керамики подразделяют на изделия, получаемые пластическим формованием и полусухим прессованием. В соответствии с нормативными документами стеновые изделия подразделяют на рядовые и лицевые. Рядовые предназначены для обеспечения эксплуатационных характеристик кладки, лицевые изделия кроме обеспечения эксплуатационных характеристик кладки выполняют функции декоративного материала.

Таблица 1

Номенклатура и номинальные размеры стеновых изделий

Вид изделий Обозначение вида Номинальные размеры, мм Обозначение размера
Длина Ширина Толщина
Кирпич нормального формата (одинарный) КО 250 120 65 1 НФ
Еврокирпич КЕ 250 85 65 0,7 НФ
Кирпич утолщенный КУ 250 120 88 1,4 НФ
Кирпич модульный одинарный КМ 288 138 65 1,3 НФ
Кирпич утолщенный с горизонтальными пустотами КУГ 250 120 88 1,4 НФ
Камень К 250 120 140 2,1 НФ
288 288 88 3,7 НФ
288 138 140 2,9 НФ
288 138 88 1,8 НФ
Камень К 250 250 140 4,5 НФ
250 180 140 3,2 НФ
Камень крупноформатный КК 510 250 219 14,3 НФ
398 250 219 11,2 НФ
380 250 219 10,7 НФ
380 255 188 9,3 НФ
380 250 140 6,8 НФ
380 180 140 4,9 НФ
250 250 188 6,0 НФ
Камень с горизонтальными пустотами КГ 250 200 70 1,8 НФ

По прочности кирпич подразделяют на марки М100, М125, М150, М175, М200, М250, М300; крупноформатные камни - М35, М50, М75, М100, М125, М150, М175, М200, М250, М300; кирпич и камень с горизонтальными пустотами - М25, М35, М50, М75, М100.

По морозостойкости кирпич выпускается четырех марок: F15, F25, F35, F50.

По средней плотности изделия подразделяют на классы 0,8; 1,0; 1,2; 1,4; 2,0, которые должны соответствовать значениям, приведенным в табл. 2.

Таблица 2

Классы стеновых изделий по средней плотности

В зависимости от теплопроводности и класса по средней плотности стеновые изделия подразделяют на группы, приведенные в табл. 3.

Таблица 3

Группы изделий по теплотехническим характеристикам

К кровельным керамическим материалам относят черепицу. Она должна обладать высокой долговечностью, водонепроницаемостью, устойчивостью к действию различных атмосферных факторов и эстетичностью, иметь однородную структуру на изломе и предел прочности на излом в сухом состоянии не менее 7 МПа, массу 1 м 2 кровли не более 45 кг, а также обладать морозостойкостью не менее 25 циклов попеременного замораживания и оттаивания, водопоглощением не более 10 % по массе.

Фасадные керамические плитки применяют для облицовки фасадов и цоколей зданий, наружных поверхностей железобетонных стеновых панелей, подземных переходов.

Основными показателями, характеризующими качество фасадных плиток, являются морозостойкость, водопоглощение, точность геометрических размеров и внешний вид. Морозостойкость рядовых плиток толщиной более 9 мм должна быть не менее 35 циклов, толщиной менее 7 мм - не менее 40 циклов при водопоглощении до 12 %. Для плиток специального назначения морозостойкость должна превышать 50 циклов, а водопоглощение допускается не более 5 %.

Плитки для полов могут быть неглазурованными и глазурованными, одно- и многоцветными, с гладкой, шероховатой (тисненой) или рифленой лицевой поверхностью. По форме плитки бывают квадратные, прямоугольные, треугольные, четырех-, пяти-, шести и восьмигранные, фигурные. Водопоглощение их должно быть не более 3,8…5 %, истираемость не более 0,07…0,06 г/см 2 .

Плитки для внутренней облицовки предназначены для облицовки внутренних поверхностей стен и перегородок. Они отличаются по форме, фактуре и виду материала, образующего фактурный слой (50 типов). Керамические плитки должны иметь водопоглощение не более 16 %, предел прочности при изгибе не менее 15 МПа, а глазурное покрытие должно обладать термостойкостью не менее 150 °С и твердостью не менее 5 по шкале Мооса.

В узком смысле слово керамика обозначает глину , прошедшую обжиг .

Самая ранняя керамика использовалась как посуда из глины или из смесей её с другими материалами. В настоящее время керамика применяется как материал в промышленности (машиностроение, приборостроение, авиационная промышленность и др.), строительстве, искусстве, широко используется в медицине, науке. В XX столетии были созданы новые керамические материалы для использования в полупроводниковой индустрии и др. областях.

Энциклопедичный YouTube

    1 / 2

    ✪ ТЁПЛАЯ КЕРАМИКА ДЛЯ СТРОИТЕЛЬСТВА ДОМА

    ✪ Керамика за 120 Евро? Для чего она нужна?

Субтитры

Виды керамики

В зависимости от строения различают тонкую керамику (черепок стекловидный или мелкозернистый) и грубую (черепок крупнозернистый). Основные виды тонкой керамики - фарфор , полуфарфор, каменная керамика , фаянс , майолика . Основной вид грубой керамики - гончарная керамика . Кроме того, различают керамику карбидную (карбид вольфрама , карбид кремния), алюмооксидную , циркониевую (на основе ZrO 2), нитридную (на основе AlN) и пр.

Гончарная керамика имеет черепок красно-коричневого цвета (используются красножгущиеся глины), большой пористости, водопоглощение до 18 %. Изделия могут покрываться бесцветными глазурями, расписываются цветными глиняными красками - ангобами .

История

Керамика известна с глубокой древности и является, возможно, первым созданным человеком искусственным материалом. Считалось, что возникновение керамики напрямую связано с переходом человека к оседлому образу жизни, поэтому оно произошло намного позднее, чем корзины . Ещё недавно первые известные нам образцы керамики относились к эпохе верхнего палеолита (граветтская культура) . Древнейший предмет из обожжённой глины датируется 29-25 тысячелетиями до нашей эры. Это вестоницкая Венера , хранящаяся в Моравском музее в Брно .

Найденные в 1993 году горшки из пещеры Сяньжэньдон (англ. ) в провинции Цзянси на юго-востоке КНР были слеплены 20-19 тыс. лет назад . Черепки от остроконечного сосуда, найденные в пещере Юйчаньянь (англ. ) в провинции Хунань на юго-востоке Китая, датируются возрастом 18,3-17,5 тыс. лет назад .

Древнейшая керамическая посуда (12 тыс. л. н.) в России обнаружена в Забайкалье (на археологических памятниках усть-каренгской культуры ) и на Дальнем Востоке (громатухинская, осиповская, селемджинская культуры; см. Сибирский неолит).

Керамика с толстым слоем растительного воска и жирного осадка с ливийских местонахождений в Сахаре (Юан Афуда (Uan Afuda ) и Такартори (Takarkori) датируется периодом 8200-6400 лет до н. э.

Первоначально керамика формовалась вручную. Изобретение гончарного круга в третьем тысячелетии до нашей эры (поздний энеолит - ранний бронзовый век) позволило значительно ускорить и упростить процесс формовки изделия. В доколумбовых культурах Америки индейская керамика изготавливалась без гончарного круга вплоть до прихода европейцев.

Отдельные виды керамики формировались постепенно по мере совершенствования производственных процессов, в зависимости от свойств сырья и получаемых условий обработки.

Древнейшие виды керамики - это разнообразные сосуды, а также пряслица , ткацкие грузики и другие предметы. Эта бытовая керамика разными способами облагораживалась - наносился рельеф штамповкой, прочерчиванием, налепными элементами. Сосуды получали разную окраску в зависимости от способа обжига. Их могли лощить, окрашивать или разрисовывать орнаментом, покрывать ангобом, глянцеватым слоем (греческая керамика и римские Terra sigillata ), цветной глазурью («Гафнеркерамика» Ренессанса).

К концу XVI века в Европе появилась майолика (в зависимости от происхождения, также часто называется фаянсом). Обладая пористым черепком из содержащей железо и известь, но при этом белой фаянсовой массы, она была покрыта двумя глазурями: непрозрачной, с высоким содержанием олова, и прозрачной блестящей свинцовой глазурью.

Каменная керамика также изготовлялась Веджвудом в Англии. Тонкий фаянс как особый сорт керамики с белым пористым черепком, покрытым белой же глазурью, появился в Англии в первой половине XVIII века. Фаянс в зависимости от крепости черепка делится на мягкий тонкий фаянс с высоким содержанием извести, средний - с более низким её содержанием и твёрдый - совсем без извести. Этот последний по составу и крепости черепка часто напоминает каменную керамику или фарфор .

Изготовление гончарных форм с использованием и без использования гончарного круга

История появления керамики на Руси

Археологические находки во многих древнерусских городах свидетельствуют о широком развитии на Руси гончарного ремесла. В Древней Руси применяли большей частью двухъярусные (нижний, топочный ярус зарывали в землю) гончарные горны, но были и одноярусные.

Монголо-татарское нашествие повлияло на развитие древнерусской культуры. История одной из её ветвей - керамики, сместилась из южных регионов в северные и западные пограничные города, в московские земли, поэтому не случайно возрождение изразцового искусства в Древней Руси было уничтожено множеством произведений русских гончаров IX-XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, искусство перегородчатой эмали, глазурь (самая простая - жёлтая, уцелела только в Новгороде), более простым стал орнамент.

Отдельное направление русской, а затем и современной российской керамики, составляет гжель (по имени города). Эти изделия исполняются в бело-синем стиле.

Прозрачная керамика

Исходные керамические материалы непрозрачны из-за особенностей их структуры. Однако спекание частиц нанометровых размеров позволило создать прозрачные керамические материалы, обладающие свойствами (диапазоном рабочих длин волн излучения, дисперсией, показателем преломления), лежащими за пределами стандартного диапазона значений для оптических стёкол .

Нанокерамика

Технология производства керамических изделий

Технологическая схема производства керамической плитки включает следующие основные фазы:

  1. Приготовление шликера ;
  2. Формовка изделия;
  3. Сушка;
  4. Приготовление глазури и глазуровка (эмалировка);

Сырьё для керамических масс подразделяется на пластичное (глины и каолины) и непластичное. Добавки шамота и кварца уменьшают усадку изделий и вероятность растрескивания на стадии формования. В качестве стеклообразователей используют свинцовый сурик , буру .

Приготовление шликера

Приготовление шликера идёт в три фазы:

  1. Первая фаза: помол полевого шпата и песка (помол ведётся от 10 до 12 часов);
  2. В первую фазу добавляется глина;
  3. Во вторую фазу добавляется каолин . Готовый шликер сливается в ёмкости и выдерживается.

Транспортировка из сырьевого склада производится при помощи погрузчика в приёмные бункера. Откуда по конвейеру отправляется либо в шаровую мельницу (для помола), либо в турборастворители (для роспуска глины и каолина)

Участок по приготовлению глазури

Глазури - глянцевидные сплавы, расплавляющиеся на керамическом черепке слоем толщиной 0,12 - 0,40 мм. Глазурь наносится, чтобы покрыть черепок изделия плотным и гладким слоем, а также для придания изделию с плотным черепком повышенной прочности и привлекательного внешнего вида, для гарантии диэлектрических свойств и защиты декора от механических и химических воздействий.

В состав глазури входит тонко измельчённый циркон , мел , белила . В одну из определяемых технологом ёмкостей загружается готовая глазурь. Её пропускают несколько раз через вибросита и магнитноуловители для извлечения металлических примесей, наличие которых в глазури может повлечь за собой образование дефектов в ходе производства. В состав добавляется клей, и глазурь отправляется на линию.

Формование

Перед формовкой шликер загружается в одну из ёмкостей. Три ёмкости используются поочерёдно (меняясь примерно раз в сутки) для определённого стенда. Форму предварительно очищают от остатков шликера после предыдущей формовки, обрабатывают шликерной водой и просушивают.

Шликер заливают в просушенные формы. Формы рассчитаны на 80 заливок. При формовании используется наливной способ. Форма впитывает в себя часть воды, и объём шликера уменьшается. В форму доливают шликер для поддержания требуемого объема.

После затвердевания изделия просушиваются, производится первичная отбраковка изделий (трещины, деформации).

Ручная обработка изделий

После формования изделия поступают в цех ручной обработки.

После нанесения глазури изделие отправляется на обжиг в печь. Печь укомплектована модулем предварительной сушки, камерами обеспыливания и обдува. Термическая обработка ведётся при температуре 1230 градусов, длина печи составляет порядка 89 метров. Цикл от погрузки до разгрузки вагонетки составляет около полутора суток. Обжиг изделий в печи проходит в продолжение суток.

После обжига проводят сортировку: разделение на группы подобных изделий, выявление дефектов. Если дефекты устранимы, то они отправляются на доработку и удаляются вручную на участке реставрации. В противном случае изделие считается бракованным.

Российская Федерация

Министерство образования и науки Челябинской области

Профессиональное училище №130

По дисциплине: «Материаловедение»

Тема: Керамические материалы

Выполнил: учащийся гр.28 Белобородов А.

Проверил: Преподаватель Долин А.М.

Южно-Уральск 2008г.

Введение

1. Общие сведения о керамических материалах

2. Сырье для производства керамических материалов и изделий

2.1 Глинистые материалы

2.2 Отощающие материалы

Заключение

Список литературы


Введение

В современном мире в строительстве очень широко применяются керамические материалы и изделия. Это обусловлено большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов.

Целью данной работы является рассмотрение и изучение керамических материалов. В соответствии с поставленной целью можно выделить и задачи работы: изучить общие сведение о керамических материалах: понятие, виды, свойства керамических материалов и изделий; сырье для производства керамических материалов и изделий: глинистые материалы, отощающие материалы.

Керамические изделия обладают различны ми свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига - газовой средой, температурой и длительностью. Материал (т.е. тело), из которого состоят керамические изделия, в технологии керамики именуют керамическим черепком.

1. Общие сведения о керамических материалах

Керамическими называют материалы и изделия, изготовляемые формованием и обжигом глин. «Керамос»- на древнегреческом языке означало гончарную глину, а также изделия из обожженной глины. В глубокой древности из глин путем обжига получали посуду, а позднее (около 5000 лет назад) стали изготовлять кирпич, а затем черепицу.

Большая прочность, значительная долговечность, декоративность многих видов керамики, а также распространенность в природе сырьевых материалов обусловили широкое применение керамических материалов и изделий в строительстве. В долговечности керамических материалов можно убедиться на примере Московского Кремля, стены которого сложены почти 500 лет назад.

Среди сырьевых порошкообразных материалов - глина, которая имеет преимущественное применение при производстве строительной керамики. Она большей частью содержит примеси, влияющие на ее цвет и термические свойства. Наименьшее количество примесей содержит глина с высоким содержанием минерала каолинита и потому называемая каолином, имеющая практически белый цвет. Кроме каолинитовых глин разных цветов и оттенков применяют монтмориллонитовые, гидрослюдистые.

Кроме глины к применяемым порошкообразным материалам, являющимися главными компонентами керамических изделий, относятся также некоторые другие минеральные вещества природного происхождения - кварциты, магнезиты, хромистые железняки.

Для технической керамики (чаще именуемой специальной) используют искусственно получаемые специальной очисткой порошки в виде чистых оксидов, например оксиды алюминия, магния, кальция, диоксиды циркония, тория и др. Они позволяют получать изделия с высокими температурами плавления (до 2500-3000В°С и выше), что имеет важное значение в реактивной технике, радиотехнической керамике. Материалы высшей огнеупорности изготовляют на основе карбидов, нитридов, боридов, силицидов, сульфидов и других соединений металлов как без глинистых сырьевых веществ. Некоторые из них имеют температуры плавления до 3500 - 4000В°С, особенно из группы карбидов.

Большой практический интерес имеют керметы, состоящие обычно из металлической и керамической частей с соответствующими свойствами. Получили признание огнеупоры переменного состава. У этих материалов одна поверхность представлена чистым тугоплавким металлом, например, вольфрамом, другая - огнеупорным керамическим материалом, например оксидом бериллия. Между поверхностями в поперечном сечении состав постепенно изменяется, что повышает стойкость материала к тепловому удару.

Для строительной керамики, как отмечено выше, вполне пригодна глина, которая является распространенным в природе, дешевым и хорошо изученным сырьем. В сочетании с некоторыми добавочными материалами из нее получают в керамической промышленности разнообразные изделия и в широком ассортименте. Их классифицируют по ряду признаков. По конструкционному назначению выделяют изделия стеновые, фасадные, для пола, отделочные, для перекрытий, кровельные изделия, санитарно-технические изделия, дорожные материалы и изделия, для подземных коммуникаций, огнеупорные изделия, теплоизоляционные материалы и изделия, химически стойкую керамику.

По структурному признаку все изделия разделяют на две группы: пористые и плотные. Пористые керамические изделия впитывают более 5% по весу воды (кирпич обыкновенный, черепица, дренажные трубы). В среднем водопоглощение пористых изделий составляет 8 - 20% по весу или 15 - 35% по объему. Плотными принимают изделия с водопоглощением меньше 5% по массе, и они практически водонепроницаемые, например плитки для пола, канализационные трубы, кислотоупорный кирпич и плитки, дорожный кирпич, санитарный фарфор. Чаще всего оно составляет 2 - 4% по весу или 4 - 8% по объему. Абсолютно плотных керамических изделий не имеется, так как испаряющаяся вода затворения, вводимая в глиняное тесто, всегда оставляет некоторое количество микро- и макропор.

По назначению в строительстве различают следующие группы керамических материалов и изделий:

стеновые материалы (кирпич глиняный обыкновенный, пустотелый и легкий, камни керамические пустотелые);

кровельные материалы и материалы для перекрытий (черепица, керамические пустотелые изделия);

облицовочные материалы для наружной и внутренней облицовки (кирпич и камни лицевые, плиты керамические фасадные, малогабаритные плитки);

материалы для полов (плитки);

материалы специального назначения (дорожные, санитарно-строительные, химически стойкие, материалы для подземных коммуникаций, в частности трубы, теплоизоляционные, огнеупорные и др.);

заполнители для легких бетонов (керамзит, аглопорит).

Наибольшего развития достигли стеновые материалы, причем наряду с общим увеличением объема производства особое внимание обращено на увеличение выпуска эффективных изделий (пустотелый кирпич и камни, керамические блоки и панели и т.д.). Предусмотрено также расширить производство фасадной керамики, особенно для индустриальной отделки зданий, глазурованных плиток для внутренней облицовки, плиток для полов, канализационных и дренажных труб, санитарно-строительных изделий, искусственных пористых заполнителей для бетонов.

По температуре плавления керамические изделия и исходные глины разделяются на легкоплавкие (с температурой плавления ниже 1350В°С), тугоплавкие (с температурой плавления 1350-1580В°С) и огнеупорные (свыше 1580В°С). Выше отмечались также примеры изделий и сырья высшей огнеупорности (с температурой плавления в интервале 2000-4000Х), используемых для технических (специальных) целей.

Отличительная особенность всех керамических изделий и материалов состоит в их сравнительно высокой прочности, но малой деформативности. Хрупкость чаще всего относится к отрицательным свойствам строительной керамики. Она обладает высокой химической стойкостью и долговечностью, а форма и размеры изделий из керамики обычно соответствуют установленным стандартам или техническим условиям.

На российском рынке в настоящее время представлены жидкие керамические теплоизоляционные материалы, которые находят своего потребителя, благодаря широкой области применения и простоте использования при небольших затратах труда. Так как предлагаемые материалы в основном производятся за рубежом, они имеют высокую стоимость, что ограничивает возможность их массового использования в строительстве, энергетике и ЖКХ и т.д. Тогда как отечественные аналоги зачастую оставляют желать лучшего, и своим «качеством» вызывают негатив и предвзятость у конечного пользователя к жидким керамическим теплоизоляционным материалам.


2. Сырье для производства керамических материалов и изделий

Сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием - глинистые материалы.

керамический строительство кровельный облицовочный

2.1 Глинистые материалы

Каолины. Каолины образовались в природе из полевых шпатов и других алюмосиликатов, не загрязненных окислами железа. Они состоят преимущественно из минерала каолинита. После обжига присущий им белый или почти белый цвет сохраняется.

Глины. Глинами называют осадочные породы, представляющие собой тонкоземлистые минеральные массы, способные независимо от их минералогического и химического состава образовывать с водой пластичное тесто, которое после обжига превращается в водостойкое и прочное камневидное тело.

Состоят глины из тесной смеси различных минералов, среди которых наиболее распространенными являются каолинитовые, монтмориллонитовые и гидрослюдистые. Представителями каолинитовых минералов являются каолинит и галлуазит. В монтмориллонитовую группу входят монтмориллонит, бейделлит и их железистые разновидности. Гидрослюды - в основном продукт разной степени гидратации слюд.

Наряду с этими минералами в глинах встречаются кварц, полевой шпат, серный колчедан, гидраты окислов железа и алюминия, карбонаты кальция и магния, соединения титана, ванадия. Такие примеси влияют как на технологию керамических изделий, так и на их свойства. Например, тонко распределенный углекислый кальций и окислы железа понижают огнеупорность глин. Если в глине имеются крупные зерна и песчинки углекислого кальция, то при обжиге из них образуются более или менее крупные включения извести, которая на воздухе гидратируется с увеличением объема (дутики), что вызывает образование трещин или разрушение изделий. Соединения ванадия служат причиной появления зеленоватых налетов (выцветов) на кирпиче, что портит внешний вид фасадов.

Керамические материалы обуславливается широким применением в различных областях деятельности человека.

Керамика-это фундамент медицинской техники. Детали из керамических материалов являются ключевыми компонентами усилителя рентгеновских снимков и источников рентгеновского излучения. Усилителя рентгеновских снимков - сердце компьютерных томографов. Он позволяет врачам с уверенностью ставить правильный диагноз при минимальном облучении пациентов.

Свойства, которыми обладает керамические элементы при изгибающей нагрузке, делают их незаменимыми компонентами измерительных систем в авиационной и космической технике. Внезапные изменения давления являются основной испытательной нагрузкой для любого летательного аппарата. Сенсорные мембраны, изготовленные из керамических материалов, распознают критические значения, передают сигналы тревоги и являются надежной защитой безопасности экипажа и пассажиров. Высокая разрешающая способность зарегистрированного сигнала достигается за счет прогиба сверхтонкой сенсорной мембраны.

Керамика используется в вакуумных камерах для ускорителей заряженных частиц, и гарантируют четкую и качественную работу благодаря стабильности геометрической формы в сочетании с высокими электроизоляционными свойствами. Фокусирующие устройства в электронных микроскопах изготовлены с точностью до нескольких микрон. Только при такой точности, возможно проводить исследования различных препаратов в области науки и техники под микроскопом, при высоком разрешении и с высокой четкостью.

В установках для изготовления фотоэлементов и полупроводников используются специальные процессы, происходящие исключительно в условиях глубокого вакуума. Такие материалы, как стекло и фарфор со своими свойствами, в этих экстремальных условиях оказываются за рамками своих возможностей. Электрические проходные изоляторы и изоляционные трубки из керамики помогают в осуществлении самых различных процессов.

Во время технологических обработок типографской пленки и бумаги встречается техническая керамика. В первую очередь, это - направляющие планки из керамических материалов, с помощью которых достигается очень высокая скорость перемещения пленки и бумаги благодаря отшлифованной поверхности, а также малым допускам по геометрическим размерам и по позиционированию. При помощи деталей из керамики возможна также переработка абразивных и даже чувствительных к механическим повреждениям видов пленки. Большая скорость перемещения в сочетании с высоким качеством делают незаменимым применение технической керамики в цифровой печати.

При производстве стекла керамике. Его термостойкость составляет до 1950°C. Благодаря использованию керамики достигается высокая точность измерения температуры при стекловарении и при производстве стеклокерамики. Керамика - химически инертный материал, таким образом, технологическая безопасность при переработке всех химических материалов полностью обеспечена.

При исчезновении напряжения с сети или в автономных системах топливные элементы из керамики обеспечивают электропитание. Изоляция отдельных поверхностей топливного элемента друг от друга и обеспечение зазора между ними осуществляется с помощью рамок из керамики.

При изготовлении электрических ламп термостойкость играет решающую роль. Благодаря высокой коррозионностойкости, колодки и формирующие ролики из керамических материалов гарантируют неизменно высокую точность.

Сварочные штифты из керамики обеспечивают высокую точность взаимного расположения свариваемых деталей автомобильных кузовов. Применение вытяжных штампов из керамики делает излишней дорогостоящую доработку деталей после процессов деформации металла.

Изделия из керамики, установленные в оборудовании для химической промышленности, значительно снижают потери из-за протечки жидких материалов. В то время как керамический защитный экран в магнитной муфте отвечает за обеспечение высокой герметичности химического насоса, антифрикционные свойства керамических поршней насосов высокого давления гарантируют долгую работоспособность элементов, обеспечивающих герметичность.

Инструменты из керамики при обработке твердых поверхностей обладают неоспоримыми преимуществами. О долговечности этих высококачественных инструментов особенно хорошо знают производители высокоточных механических приборов и устройств, например, в часовой, оптической и стекольной промышленности. Поликристаллический спеченный рубин (агломерат-рубин) имеет твердость, близкую к твердости алмаза, и может использоваться для различных видов обработки поверхности деталей.

Керамика отличается исключительным многообразием свойств по сравнению с другими типами материалов. Среди видов керамики всегда можно найти такие, которые с успехом заменяют металлы и полимеры, тогда как обратное возможно далеко не во всех случаях. Использование керамики открывает возможность для создания разнообразных по свойствам материалов в пределах одной и той же химической композиции.

    Общие сведения о керамических строительных материалах и изделиях

    Классификация керамических строительных материалов и изделий. Свойства, применение

    Сырье для производства керамических материалов и изделий. Классификация, технологические свойства

    Производство керамических строительных материалов и изделий. Общие технологические процессы

Керамические материалы – искусственные каменные материалы, полученные из природных глин или глиняных смесей с минеральными добавками путем формования, сушки и последующего обжига. Слово «керамика» (греч. ceramos) означает обожженная глина. Из нее изготовляли обожженный кирпич, кровельную черепицу, водопроводные трубы, архитектурные детали. Керамические материалы являются самыми древними из всех искусственных каменных материалов. Черепки грубых горшечных изделий находят на месте поселений каменного века. Следы древней керамики (посуда, вазы и т.п.) сохранились в Древнем Египте, Греции. На Руси старинные русские соборы X-XV вв. (Владимирский, Новгородский, церковь в Коломенском и храм Василия Блаженного (Покровский собор, 1561 г.). В Москве, при строительстве которого широко использовали цветной и обыкновенный кирпичи, черепицу и другие керамические изделия).

Большое развитие керамика получила в Средней Азии, Древней Индии, Китае и Японии. У греков и римлян из глины изготовляли обожженный кирпич, кровельную черепицу, архитектурные детали и другие изделия, глинобитные жилища (IV-III тыс. до н.э.).

Высокими художественными достоинствами отмечено и русское изразцовое искусство XV-XVIII вв. Терракотовые и глазурованные образцы изготовляли в Москве, Ярославле. Терракота (от итал. terra– земля, cotta–обожженная) – неглазурованная однотонная керамика с характерным цветным пористым черепком.

Кирпич появился более 5000 лет назад и как конструкционный материал впервые стали применять в Древнем Египте и Вавилонии. И в настоящее время, в период бурного развития строительной промышленности, глиняный кирпич не потерял своего значения. Повсеместное распространение исходного сырья – глины, простота изготовления и длительный срок службы позволяют считать его одним из основных местных строительных материалов.

    Классификация керамических строительных материалов и изделий. Свойства, применение

Керамические строительные материалы и изделия по их назначению в отделке зданий и отдельных элементах подразделяются на:

    фасадные изделия – лицевой кирпич, разного рода плитки;

    изделия для внутренней отделки – глазурованные и неглазурованные плитки, фасонные изделия, ковровая и мозаичная керамика;

    плитку для пола;

    изделия из фаянса и фарфора декоративного назначения.

Отделочная керамика (облицовочные плитки для стен и полов, керамическая ковровая мозаика, архитектурные детали, терракота, майолика) обладает ценными универсальными потребительными свойствами:

    водостойкость

    стойкость к агрессивным воздействиям;

    высокая экологичность;

    простота технологических приёмов изготовления;

    разнообразие сырьевых материалов;

    прочность;

    долговечность;

    гигиеничность;

    декоративность.

Керамические изделия обладают различными свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига.

Применение – во всех элементах зданий и сооружений, в сборном керамическом домостроении, в строительстве стеновых керамических изделий, для изготовления фасадной керамики, пористых заполнителей для бетонов, санитарно-технической керамики, плитки для полов, керамических канализационных труб и др.

Таким образом, керамические материалы отвечают современным тенденциям строительной техники, являются конкурентоспособными с другими строительными материалами такого же назначения. Материал, из которого состоят керамические изделия, в технологи керамики называют керамическим черепком.

В зависимости от пористости структуры керамические строительные изделия делят на две группы:

    пористые (водопоглощением по массе 5 и более 5% - керамический кирпич и камни, черепицу кровельную, облицовочные плитки и керамические трубы);

    плотные (водопоглощением по массе – менее 5% - плитки для полов и дорожный кирпич);

Санитарно-техническая керамика может быть пористой (фаянс) и плотной(санитарный фарфор).

    Сырье для производства керамических материалов и изделий. Классификация, технологические свойства

Глина – сырьё для производствакерамических материалов

Качество сырьевых материалов определяется минералогическим составом, физическими свойствами, зависящими от месторождения и условиями залегания. Основными сырьевыми материалами для производства керамических изделий являются глины и каолины ; в качестве вспомогательных сырьевых материалов для улучшения технологических свойств используют пески кварцевые и шлаковые, шамот, выгорающие добавки органического происхождения (древесные опилки, угольная крошка и т.п.).

Глина – один из наиболее распространенных видов осадочных горных пород полиминерального состава. Кислород, кремний и алюминий по своей общей массе составляют около 90% в составе земной коры, потому подавляющую часть минералов составляют алюмосиликаты, силикаты и кварц основа встречающихся в природе керамических сырьевых минералов. Размеры глинистых частиц колеблются практически от коллоидной дисперсности до 5 мкм. Основным минералом каолиновых глин является минерал каолинит.

Глины – землистые осадочные горные породы, состоящие из глинистых минералов со значительными примесями: каолинита, галлуазита, монтмориллита, бейделлита, частиц кварца, полевых шпатов, гидрослюд, гидратов окиси железа, алюминия, карбонатов магния, кальция и др.

Пластичность глинистого сырья, определяемая числом пластичности (по раскатыванию глиняного жгута диаметром 3 мм), зависит от содержания глинистых минералов и влажности массы. В зависимости от содержания глинистых минералов глины делятся: на:

    жирные (более 60%);

    обычные (30... 60%);

    тяжелые суглинки (20... 30%);

    средние и легкие суглинки (менее 20%).

По пластичности глинистые материалы подразделяются по числу пластичности на:

    высокопластичные (менее 25);

    среднепластичные (15... 25);

    умеренно-пластичные (7... 15);

    малопластичные (3... 7).

Вода, адсорбированная поверхностью глинистых частиц в процессе приготовления сырьевой смеси, играет роль гидродинамической смазки, что обеспечивает во многом ее пластические характеристики. Вместе с тем удаление воды, как из самих глинистых частиц, так и с их поверхности в процессе сушки и обжига вызывает явление воздушной и огневой усадки.

Усадочные деформации являются причиной возникновения в изделии внутренних напряжений, что в конечном итоге влияет на их качественные показатели.

Для уменьшения усадки при сушке и обжиге, а также для предотвращения образования трещин в пластичные глины вводят искусственные или природные отощающие добавки . К их числу относятся дегидратированная глина, шамот, котельные шлаки, золы, кварцевые пески и т.д.

Введение в состав сырьевой смеси плавней обеспечивает более низкую температуру ее спекания. К плавням относят полевые шпаты, пегматит, доломит, тальк, магнезит, карбонаты бария и стронция, нефелиновые сиениты (для фаянсовых масс). Искусственный керамический материал, отформованный из глинистого сырья, получается в результате сложных физических, химических и физико-химических изменений, происходящих при обжиге, т.е. при воздействии высоких температур.

Каолины – это чистые глины, состоящие преимущественно из глинистого минерала каолинита (Al 2 O 3 ·2SiO 2 ·2H 2 O). Каолины огнеупорны, малопластичны, имеют белую окраску. Их применяют для производства фарфора, фаянса и тонких облицовочных изделий, так как после обжига получается белый черепок.

Обычные глины отличаются от каолинов большим разнообразием минералогического, химического и гранулометрического состава. Изменения химического состава заметно отражаются на свойствах глин. С увеличением А1 2 O 3 повышается пластичность глин и огнеупорность, а с повышением содержания SiO 2 пластичность глин снижается, увеличивается пористость, снижается прочность обожженных изделий. Присутствие оксидов железа снижает огнеупорность глины, наличие щелочей ухудшает формуемость изделий.

При изготовлении керамических материалов основными технологическим свойствами глин являются:

    пластичность;

    воздушная и огневая усадка;

    огнеупорность

    цвет керамического черепка

    спекаемость.

Пластичность глин – способность глиняного теста под действием внешних сил принимать заданную форму и сохранять ее после прекращения действия этих сил. По степени пластичности глины делят на:

    высоко пластичные, или «жирные»,

    средней пластичности

    малопластичные, или «тощие».

Жирные глины хорошо формуются, но, высыхая, дают трещины и значительную усадку. Тощие глины формуются плохо. Для повышения пластичности глин применяют операцию вылеживания их во влажном состоянии на воздухе, вымораживание, гноение в темных подвалах, при этом происходит разрыхление материала и увеличивается ее дисперсность. Пластичность можно также повысить добавлением высокопластичных глин. Самый распространенный способ повышения пластичности - их механическая обработка. Для понижения пластичности глин вводят добавки различных непластичных материалов (отощающие добавки).

Усадка – уменьшение линейных размеров и объема глиняного сырца при его сушке (воздушная усадка) и обжиге (огневая усадка). Усадку выражают в процентах от первоначального размера изделия.

Воздушная усадка происходит при испарении воды из сырца в процессе его сушки на воздухе и составляет, 2...10%.

Огневая усадка получается из-за того, что в процессе обжига легкоплавкие составляющие глины расплавляются и частицы глины в местах их контакта сближаются. Огневая усадка составляет 2...8%.

Полная усадка определяется как арифметическая сумма величин воздушной и огневой усадок. Значение полной усадки колеблется в пределах 4...18%. Полную усадку учитывают при формовании изделий.

Огнеупорность – свойство глины выдерживать действие високих температур без деформации. По температуре плавления глины разделяются на:

    легкоплавкие (с температурой плавления ниже 1350°С),

    тугоплавкие (с температурой плавления 1350...1580°С)

    огнеупорные (свыше 1580°С).

Огнеупорные глины применяют для производства огнеупорных изделий, а также фарфора и фаянса. Тугоплавкие глины применяют в производстве плиток для полов, канализационных труб. Легкоплавкие глины используют для производства керамического кирпича, пустотелых камней, черепицы.

Цвет черепка после обжига зависит от состава и количества примесей в глине. Каолины дают черепок белого цвета. На цвет обожженных глин оказывает влияние содержание оксидов железа, которые придают окраску от светло-желтой до темно-красной и бурой. Оксиды титана вызывают синеватую окраску черепка. Используя минеральные красители, можно получать керамические изделия различных цветов и оттенков.

Спекаемостъю глин называют ее способность уплотняться при обжиге и образовывать камневидный материал. При спекании увеличивается прочность и уменьшается водопоглощение изделий.

    Производство керамических строительных материалов и изделий. Общие технологические процессы

Эксплуатационные характеристики керамических изделий во многом определяются как составом сырьевых материалов, так и технологическими приемами их изготовления. В производстве обширной номенклатуры современной строительной керамики используются родственные технологические процессы, позволяющие кратко обобщить основы производства керамических материалов.

Можно выделить следующие общие технологические процессы:

1. добыча глины;

2. подготовка сырьевой массы;

3. формование изделия (сырца);

Эти пять стадий производства являются общими для всех видов керамических изделий. Для отдельных видов изделий могут применять различные способы формования (кирпич пластического и полусухого формования), разные способы сушки (воздушная или в сушильных камерах), а также дополнительные производственные процессы – покрытие изделий глазурью или ангобом.

Добыча глины: Добыче сырья предшествует геологическая разведка, определение химического и минерального состава, физических свойств сырья, полезной толщи месторождения, его однородности и характера залегания, объема работ и т.д. Глина обычно залегает – на небольшой глубине. Разрабатывается сырье в карьерах открытым способом – одноковшовыми, многоковшовыми или роторными экскаваторами. Заводы по производству керамических изделий обычно строят вблизи месторождений глин, т.е. карьер является составной частью завода. Добычу глины стремяться осуществлять в теплое время года, создавая запас материала на складе для работы зимой. Транспортируют глину из карьера на заводы рельсовым транспортом в опрокидных вагонетках, ленточными транспортерами и автосамосвалами.

Подготовка сырьевой массы . Добытая в карьере и доставленная на завод глина непригодна для формования изделий, и нужно разрушить природную структуру глины, очистить ее от вредных примесей, измельчить крупные фракции, смешать с добавками, увлажнить ее, чтобы получилась удобоформуемая масса. В крытых складах или на открытых площадках глинистые материалы выдерживаются до двух лет. За это время разлагаются органические остатки и под действием атмосферных факторов(увлажнения и высушивания, замораживания и оттаивания) и предварительной обработки (рыхления, камнеудаления и т.д.) удается достичь сравнительной однородности массы, как по гранулометрическому, так и по минеральному составу. Дальнейшая подготовка массы осуществляется в зависимости от вида изделий и предполагаемой технологии их изготовления.

На этом этапе с помощью камневыделительных машин, вальцов, мельниц различного вида, дозаторов добавок и воды, глиномешалок или диспергаторов удается получить массу, пригодную для формования изделий. Формовочную массу готовят пластическим, полусухим или мокрым способами в зависимости от свойств сырьевых материалов и требований к качеству получаемого изделия.

Формование изделий – одно из важных операций при изготовлении керамических изделий. Способы изготовления определяются формовочными свойствами сырьевой смеси и, прежде всего, пластичностью, которая многом зависит от количества воды в формовочной смеси. В зависимости от влажности формовочной массы способы подразделяются на сухой, полусухой, пластический и литьевой(шликерный).

При сухом способе пресспорошок имеет влажность 2…6%, при которой используют механические или гидравлические прессы, развивающие давление свыше 40 МПа. Данным способом изготавливают плотные керамические изделия: плитку для полов, некоторые виды кирпича, изделия из фаянса и фарфора.

Полусухой способ предусматривает использование рабочих смесей с влажностью 8... 12%. Поэтому способу изготавливается кирпич, фасонне изделия, плитка.

Наиболее экономичным и распространенным является способ пластического формования при влажности массы 18... 24%. Основной механизм, используемый в этом случае,– ленточный пресс. Шнеквал пресса с переменным шагом лопастей перемалывает массу, одновременно уплотняя её к выходному отверстию. Вакуумирование на последней стадии прессования позволяет дополнительно уплотнить массу. Выходное отверстие пресса– мундштук обеспечивает получение непрерывного глиняного бруса необходимых геометрических размеров. Форма мундштука и его размеры определяют вид выпускаемых изделий: кирпич, камни, плитки, черепица, трубы, фасонные изделия. Установленные перед мундштуком пустотообразователи позволяют формовать дырчатые изделия, с щелевыми пустотами и т.д.

Литьевым способом изготавливают керамические изделия сложной геометрической формы: сантехнические изделия (раковины, унитазы, писсуары и т.д.), некоторые декоративные изделия, плитку для внутренней отделки помещений. Компоненты рабочей смеси тщательно размешивают, дозируют, перемешивают с водой. Влажность массы в этом случае от 40 до 60%. Подготовленная таким образом однородная масса выливаетс в гипсовые формы. Развитая микропористая структура гипсового камня обуславливает удаление части воды в пристеночных слоях. В результате в зависимости от времени достигается необходимая толщина уплотненного слоя. Избыток смеси после этого удаляется. После сушки отдельные эле-менты монтируются.

Сушка и обжиг изделий. В зависимости от способа изготовления влажность сырьевых смесей колеблется в очень больших пределах от 2 до 60%. Удаление воды из отформованных изделий сопровождается усадочными деформациями и, соответственно, возникновением внутренних напряжений. Последние при жестких режимах сушки могут являться причиной искривления, появления трещин, снижающих качественные показатели изделий. Сушку изделий производят до остаточной влажности 4... 6% в туннельных или камерных сушилках. Температура теплоносителя 120...150°С.

Обжиг керамических изделий – один из наиболее ответственных технологических этапов, во многом определяющих свойства получаемых материалов.

В производстве строительной керамики в основном используют туннельные печи непрерывного действия высушенные изделия на обжиговых вагонетках, передвигаясь по туннелям, постепенно нагреваются до температуры спекания в зоне сгорания топлива, а затем медленно охлаждаются встречным потоком воздуха.

При температуре порядка 100...120 °С удаляется физически связанная свободная вода. При температуре 450 ...600 °С глинистые вещества необратимо теряют пластические свойства. Дальнейшее повышение температуры приводит к разрушению кристаллической решетки алюмосиликатов и распаду их на отдельные окислы: при повышении температуры до 1000 °С образуется соединение силлиманит, при температуре 1200-1300 С – новый минерал муллит. Эти минералы обеспечивают высокую прочность и стойкость керамического черепка к различным факторам внешней среды.

После обжига полученные изделии медленно охлаждаются, так как при резком охлаждении могут образоваться трещины. Перед отгрузкой потребителю керамические изделия сортируют с целью проверки качественных показателей на их соответствие требованиям государственных стандартов.

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»