Биохимическая очистка воды. Биологическая очистка сточных вод. Состав бытовых сточных вод

Подписаться
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:

Эти методы применяют для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворённых органических и некоторых неорганических (сероводорода, аммиака, сульфидов, нитритов и др.) веществ. Процесс очистки основан на способности определённых микроорганизмов использовать указанные вещества для питания: органические вещества для микроорганизмов являются источником углерода. Микроорганизмы частично разрушают их, превращая в СO 2 , Н 2 O, нитрат и сульфат-ионы, частично используют для образования собственной биомассы. Процесс биохимической очистки по своей сути – природный, его характер одинаков для процессов, протекающих как в природных водоёмах, так и в очистных сооружениях.

Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, простейших и более высокоорганизованных организмов (водорослей, грибов), связанных между собой в единый комплекс сложными взаимоотношениями. Это сообщество называют активным илом, он содержит от 106 до 1014 клеток на 1 г сухой биомассы (около 3 г микроорганизмов на 1 литр сточной воды).

Известны аэробные и анаэробные методы биохимической очистки сточных вод.

Аэробный процесс. Для его осуществления используются группы микроорганизмов, для жизнедеятельности которых необходимы постоянный приток кислорода (2 мг O 2 /л), температура 20 – 30 °С, рН среды 6,5 – 7,5, соотношение биогенных элементов БПК: N: Р не более 100: 5: 1. Ограничением метода является содержание токсичных веществ не выше: тетраэтилсвинца 0,001 мг/л, соединений бериллия, титана, Сг 6+ и оксида углерода 0,01 мг/л, соединений висмута, ванадия, кадмия и никеля 0,1 мг/л, сульфата меди 0,2 мг/л, цианистого калия 2 мг/л.

Аэробная очистка сточных вод проводится в специальных сооружениях: биологических прудах, аэротенках, окситенках, биофильтрах.

Биологические пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными сооружениями. Их выполняют в виде каскада прудов, состоящих из 3 – 5 ступеней. Процесс очистки сточных вод реализуется по следующей схеме: бактерии используют для окисления загрязнений кислород, выделяемый водорослями в процессе фотосинтеза, а также кислород из воздуха. Водоросли, в свою очередь, потребляют оксид углерода, фосфаты и аммонийный азот, выделяемый при биохимическом разложении органических веществ. Поэтому для нормальной работы прудов необходимо соблюдать оптимальные значения рН и температуру сточной воды. Температура должна быть не менее 6 °С, в связи с чем в зимнее время пруды не эксплуатируются.

Различают пруды с естественной и искусственной аэрацией. Глубина прудов с естественной поверхностной аэрацией, как правило, не превышает 1 м. При искусственной аэрации прудов с помощью механических аэраторов или продувки воздуха через толщу воды их глубина увеличивается до 3 м. Применение искусственной аэрации ускоряет процессы очистки воды. Следует указать и недостатки прудов: низкую окислительную способность, сезонность работы, потребность в больших территориях.



Сооружения для искусственной биологической очистки по признаку расположения в них активной биомассы можно разделить на две группы:

– активная биомасса находится в обрабатываемой сточной воде во взвешенном состоянии (аэротенки, окситенки);

– активная биомасса закрепляется на неподвижном материале, а сточная вода обтекает его тонким плёночным слоем (биофильтры).

Аэротенки представляют собой железобетонные резервуары, прямоугольные в плане, разделенные перегородками на отдельные коридоры.

Для поддержания активного ила во взвешенном состоянии, интенсивного его перемешивания и насыщения обрабатываемой смеси кислородом воздуха в аэротенках устраиваются различные системы аэрации (чаще механическая или пневматическая). Из аэротенков смесь обработанной сточной воды и активного ила поступает во вторичный отстойник, откуда осевший на дно активный ил с помощью специальных устройств (илососов) отводится в резервуар насосной станции, а очищенная сточная вода поступает либо на дальнейшую доочистку, либо дезинфицируется. В процессе биологического окисления происходит прирост биомассы активного ила. Для создания оптимальных условий её жизнедеятельности избыток ила выводится из системы и направляется в сооружения по обработке осадка, а основная часть в виде возвратного активного ила снова возвращается в аэротенк. Концентрация иловой массы в аэротенке (доза ила по сухому веществу) составляет 2 – 5 г/л; расход воздуха 5 – 15 м 3 на 1 м 3 сточной воды; нагрузка по органическим загрязнителям 400 – 800 мг БПК на 1 г беззольного активного ила в сутки. При этих условиях обеспечивается полная биологическая очистка. Время нахождения сточной воды в зависимости от её состава колеблется от 6 до 12 ч. Комплексы очистных сооружений, в состав которых входят аэротенки, имеют производительность от нескольких десятков до 2 – 3 млн. м 3 сточных вод в сутки.

Для пневматической аэрации сточных вод вместо воздуха может подаваться чистый кислород. Для такого процесса используются окситенки , несколько отличные по конструкции от аэротенков. Окислительная способность окситенков в 3 раза выше последних.

Биофильтры находят применение при суточных расходах бытовых и производственных сточных вод до 20 – 30 тыс. м 3 в сутки. Биофильтры представляют собой резервуары круглой или прямоугольной формы в плане, которые заполняются загрузочным материалом. По характеру загрузки биофильтры разделяют на две категории: с объёмной и плоскостной загрузкой. Объёмный материал, состоящий из гравия, керамзита, шлака с крупностью фракций 15 – 80 мм, засыпается слоем высотой 2 – 4 м. Плоскостной материал выполняется в виде жёстких (кольцевых, трубчатых элементов из пластмасс, керамики, металла) и мягких (рулонная ткань) блоков, которые монтируются в теле биофильтра слоем толщиной 8 м.

Анаэробный процесс . Здесь происходит биологическое окисление органических веществ в отсутствие молекулярного кислорода за счёт химически связанного кислорода в таких соединениях, как SO 4 2─ , SO 3 2─ , СO 3 2─ . Процесс протекает в две стадии: на первой образуются органические кислоты, на второй стадии образовавшиеся кислоты преобразуются в метан и СO 2: органические соединения + О 2 + кислотообразующие бактерии → летучие кислоты + СН 4 + СO 2 + Н 2 + новые клетки + другие продукты → летучие кислоты + О 2 + метанобразующие бактерии → СН 4 + СO 2 + новые клетки.

Основной процесс проводится в метантенках. В них перерабатывается активный ил и концентрированные сточные воды (обычно БПК > 5000), содержащие органические вещества, которые разрушаются анаэробными бактериями в ходе метанового брожения. Указанное брожение в естественных условиях протекает на болотах.

Основная цель анаэробной очистки – уменьшение объёма активного ила или количества органических веществ в сточной воде, получение метана (до 0,35 м 3 при нормальных условиях на 1 кг ХПК) и хорошо фильтрующего и без запаха осадка. Осадки после фильтрации могут быть использованы в качестве удобрения в растениеводстве (если содержание в них тяжёлых металлов ниже ПДК). Получаемый в метантенках газ содержит до 75 % (об.) метана (остальное – СO 2 и воздух) и используется в качестве горючего. В то же время анаэробный процесс весьма чувствителен к залповым выбросам, что приводит к выходу из «строя» микрофлоры. На её восстановление может быть потрачено от 1 до 6 месяцев. В связи с образованием метана этот процесс взрыво- и пожароопасен.

Биологическая очистка загрязнённых вод может быть, помимо биологических прудов, осуществлена в естественных условиях, для чего используют специально подготовленные участки земли (поля орошения и фильтрации). В этих случаях для освобождения сточных вод от загрязняющих примесей используется очищающая способность самой почвы. Фильтруясь сквозь слой почвы, вода оставляет в ней взвешенные, коллоидные и растворённые примеси. Микроорганизмы почвы окисляют органические загрязняющие вещества, превращая их в простейшие минеральные соединения – диоксид углерода, воду, соли.

Поля орошения используются одновременно для очистки сточных вод и выращивания зерновых и силосных культур, трав, овощей, а также посадки кустарников и деревьев. Поля фильтрации используются только для очистки сточных вод.

Земледельческие поля орошения (ЗПО) располагают на местности, имеющей уклон, ступенями для того, чтобы вода самотёком переливалась с одного участка на другой. Устройство ЗПО позволяет комплексно решать проблемы охраны окружающей среды, благоустройства города и развитие пригородного сельского хозяйства.

После биологической очистки сточных вод на искусственных сооружениях общее содержание в них бактерий уменьшается на 90 – 95 %, а при очистке на ЗПО – на 99 %. Для полного обеззараживания сточных вод их необходимо подвергнуть химическому обеззараживанию (хлором, озоном, пероксидом водорода, ультрафиолетом, ультразвуком).

При эксплуатации сооружений биологической очистки необходимо соблюдать технологический регламент их работы, не допускать перегрузок и особенно залповых поступлений токсичных компонентов, поскольку такие нарушения могут губительно сказаться на жизнедеятельности микроорганизмов. Поэтому в сточных водах, направляемых на биологическую очистку, содержание нефти и нефтепродуктов должно быть не более 25 мг/л, ПАВ – не более 50 мг/л, растворённых солей – не более 10 г/л. Кислотность сточных вод, поступающих на биохимическую очистку, не должна превышать 9, в противном случае микроорганизмы-минерализаторы погибнут.

Основными сооружениями биохимической очистки на отечественных НПЗ служат аэротенки и вторичные отстойники. Как правило, на очистных сооружениях НПЗ применяют аэротенки с рассредоточенным впуском сточных вод и аэротенки --смесители. Обычные аэротенки-- вытеснители -- чаще всего применяют на второй ступени очистки .

Биологические фильтры практически не нашли применения для очистки нефтесодержащих сточных вод на отечественных предприятиях, так как опыт их эксплуатации на одном из НПЗ показал, что эффект очистки в них значительно ниже, чем в аэротенках. В настоящее время биологические фильтры используют только на двух нефтеперерабатывающих заводах как вторую ступень очистки. Биологические пруды на отечественных заводах применяют только в качестве сооружений для доочистки биохимически очищенных сточных вод НПЗ .

Аэротенки

Аэротенк представляет собой аппарат с постоянно протекающей сточной водой, во всей толще которой развиваются аэробные микроорганизмы, потребляющие субстрат, т.е. "загрязнение" этой сточной воды.

Биологическая очистка сточных вод в аэротенках происходит в результате жизнедеятельности микроорганизмов активного ила. Сточная вода непрерывно перемешивается и аэрируется до насыщения кислородом воздуха. Активный ил представляет собой суспензию микроорганизмов, способную к флокуляции.

Механизм изъятия органических веществ из сточной воды и их потребление микроорганизмами может быть представлено тремя этапами :

1 этап - массопередача органического вещества из жидкости к поверхности клетки. Скорость протекания этого процесса определяется законами молекулярной и конвективной диффузии веществ и зависит от гидродинамических условий в аэротенке. Оптимальные условия для подведения загрязнений и кислорода создаются посредством эффективного и постоянного перемешивания содержимого аэротенка. Первый этап протекает быстрее последующего процесса биохимического окисления загрязнений.

2 этап - диффузия через полупроницаемые мембраны в клетке или самого вещества или продуктов распада этого вещества. Большая часть вещества поступает внутрь клеток при помощи специфического белка-переносчика, который образует комплекс, диффундирующий через мембрану.

3 этап - метаболизм органического вещества с выделением энергии и образованием нового клеточного вещества. Превращение органических соединений носит ферментативный характер.

Определяющими процессами для технологического оформления очистки воды являются скорости изъятия загрязнений и скорость разложения этих загрязнений. Активный ил в контакте с загрязнённой жидкостью в условиях аэрации проходит следующие фазы развития :

1. Лаг-фазу I, или фазу адаптации ила к составу сточной воды. Прироста биомассы практически не происхдит.

2. Фазу экспоненциального роста II, в которой избыток питательных веществ и отсутствие продуктов обмена способствуют максимальной скорости размножения клеток.

3. Фазу замедленного роста III, в которой скорость роста биомассы начинает сдерживаться недостатками питания и накоплением продуктов метаболизма.

4. Фазу нулевого роста IV, в которой наблюдается практически стационарное состояние в количестве биомассы.

5. Фазу эндогенного дыхания (или фазу самоокисления) V, в которой из-за недостатка питания начинаются отмирание и распад клеток, ведущие к снижению общего количества биомассы.

Аэротенки могут быть классифицированы по гидродинамическому режиму их работы:

I) аэротенки идеального вытеснения;

2) аэротенки идеального смешения;

3) аэротенки промежуточного типа

Гидродинамический режим работы аэротенков оказывает принципиальное влияние на условия культивирования микроорганизмов а следовательно, на эффективность и экономичность биологической очистки сточных вод.

Конструкции аэротенков могут быть различными и зависят от системы аэрации, способа распределения потоков сточных вод и возвратного ила и т.д. Имеются также конструкции аэротенков, совмещенных с отстойниками и фильтрами, с регенерацией активного ила и без нее.

Существует также классификация аэротенков по величине "нагрузки" на активный ил: высоконагружаемые (аэротенки на неполную очистку), обычные и низконагружаемые (аэротенки продленной аэрации).

Большое значение в конструкции аэротенков имеет система аэрации. Применяются аэротенки с пневматической, пневмомеханической, механической и эжекционной системами аэрации.

Аэрационные системы предназначены для подачи и распределения кислорода или воздуха в аэротенке, а также поддержания активного ила во взвешенном состоянии.

Аэротенки-смесители (аэротенки полного смешения) характеризуются равномерной подачей по длине сооружения исходной воды и активного ила и равномерным отводом иловой смеси. Полное смешение в них сточных вод с иловой смесью обеспечивает выравнивание концентраций ила и скоростей процесса биохимического окисления, поэтому аэротенки-смесители более приспособлены для очистки концентрированных производственных сточных вод (БПК полное до 1000 мг/л) при резких колебаниях их расхода, состава и количества загрязнений.

Рис.2.

Аэротенки-вытеснители. В отличие от аэротенков других типов (аэротенков-смесителей и аэротенков промежуточного типа), аэротенки-вытеснители представляют собой сооружения, в которых очищаемая сточная вода постепенно перемещается от места впуска к месту ее выпуска. При этом практически не происходит активного перемешивания поступающей сточной воды с ранее поступившей. Процессы, протекающие в этих сооружениях, характеризуются переменной скоростью реакции, поскольку концентрация органических загрязнений уменьшается по ходу движения воды. Аэротенки-вытеснители весьма чувствительны к изменению концентрации органических веществ в поступающей воде, особенно к залповым поступлениям со сточными водами токсических веществ, поэтому такие сооружения рекомендуется применять для очистки городских и близких по составу к бытовым промышленных сточных вод.


Рис.3.

При отсутствии резких колебаний расхода сточных вод и содержания токсических веществ вместо аэротенков-смесителей предпочтительнее применять аэротенки-вытеснителн, которые отличаются меньшим объемом и простотой конструкции.

Разновидностью аэротенков-вытеснителей является секционированный аэротенк, в котором для предотвращения возвратного движения воды коридоры сооружения разделены поперечными перегородками на пять-шесть последовательно проточных секций (ячеек). Секционирование оказывается целесообразным при длине коридоров в аэротенках менее 60--80 м.

Коридорный аэротенк работает практически как вытеснитель при отношении расстояния от впуска очищаемой воды до конца последнего коридора к ширине коридора не менее 50: 1. При ширине коридора 6 или 9 м минимальное расстояние от впуска сточной воды до конца последнего коридора должно составлять соответственно 300 и 450 м.

При использовании аэротенков с коридорами меньшей длины наблюдается процесс значительного осевого смешения, которое искажает эффект вытеснения. Для недопущения продольного перемешивания и приближения процесса к режиму вытеснения в этом случае необходимо предусматривать секционирование аэротенков. Секционирование может быть осуществлено путем установки в коридорах аэротенков легких вертикальных перегородок с отверстиями в нижней части. Скорость движения иловой смеси в отверстиях перегородок принимается равной не менее 0,2 м/с.

Для исключения отрицательного влияния залповых поступлений концентрированных сточных вод первая секция аэротенка должна иметь больший объем. Конструктивно такая секция оформляется как аэротенк-смеситель, что достигается рассредоточенным впуском в нее сточных вод. Расстояние между выпусками следует принимать не менее ширины коридора. Размер выпускных отверстий в распределительных лотках должен быть рассчитан на пропуск 50 % расхода стоков, поступающих в секцию. Конструкция аэротенков-вытеснителей (в том числе и секционированных) должна обеспечивать работу по схеме с регенерацией активного ила Регенерация ила принимается равной 25-50 % объема сооружений

Известные конструкции секционированного аэротенка с последовательным перетеканием очищаемой воды имеют недостатки, которые препятствуют их широкому использованию. Основной недостаток - неудовлетворительные условия адаптации активного ила в связи с различными режимами работы ячеек.

Аэротенки с рассредоточенным впуском сточной воды занимают промежуточное положение между смесителями и вытеснителями; их применяют для очистки смесей промышленных и городских сточных вод.


Рис. 4.

Аэротенки можно компоновать с отдельно стоящими вторичными отстойниками или объединять в блок при прямоугольной форме обоих сооружений в плане. Наиболее компактны комбинированные сооружения -- аэротенки-отстойники. За рубежом этот тип сооружения круглой в плане формы с механическими аэраторами получил название аэроакселатора. Совмещение аэротенка с отстойником позволяет увеличить рециркуляцию иловой смеси без применения специальных насосных станций, улучшить кислородный режим в отстойнике и повысить дозу ила до 3--5 г/л, соответственно увеличив окислительную мощность сооружения.

Разновидность аэротенка-отстойника -- аэроакселатор, предложенный НИКТИ ГХ, представляет собой круглое в плане сооружение. Осветленные сточные воды поступают в нижнюю часть зоны аэрации, куда пневматическим или пневмомеханическим способом подается воздух, что обеспечивает процесс биохимического окисления, а также создает циркуляционное движение жидкости в этой зоне и подсос иловой смеси из циркуляционной зоны отстойника. Из зоны аэрации иловая смесь через затопленные регулируемые переливные окна поступает в воздухоотделитель и далее в циркуляционную зону отстойника. Значительная часть иловой смеси через щель возвращается в зону аэрации, а отводимые очищенные сточные воды через слой взвешенного осадка поступают в отстойную зону.

Вторичные отстойники

Вторичные отстойники являются составной частью сооружений биологической очистки, располагаются в технологической схеме непосредственно после биоокислителей и служат для отделения активного ила от биологически очищенной воды, выходящей из аэротенков, или для задержания биологической пленки, поступающей с водой из биофильтров.

Эффективность работы вторичных отстойников определяет конечный эффект очистки воды от взвешенных веществ .

Для технологических схем биологической очистки сточных вод в аэротенках вторичные отстойники в какой-то степени определяют также объем аэрационных сооружений, зависящий от концентрации возвратного ила и степени его рециркуляции, способности отстойников эффективно разделять высококонцентрированные иловые смеси.

Иловая смесь, поступающая из аэротенков во вторичные отстойники, представляет собой гетерогенную (многофазную) систему, в которой дисперсионной средой служит биологически очищенная сточная вода, а основным компонентом дисперсной фазы являются хлопки активного ила, сформированные в виде сложной трехуровневой клеточной структуры, окруженной экзоклеточным веществом биополимерного состава.

Важнейшим свойством иловой смеси как дисперсной системы является ее агрегативная неустойчивость, которая выражается в изменении диаметра хлопков активного ила в пределах 20-300 мкм в зависимости от интенсивности турбулентного перемешивания.

При снижении интенсивности турбулентного перемешивания и последующем отстаивании иловой смеси в результате биофлокуляции происходит агрегирование хлопков активного ила в хлопья размером 1-5 мм, которые осаждаются под воздействием силы тяжести.

Осаждение хлопьев активного ила (при его концентрации в иловой смеси более 0,5-1 г/л) происходит с образованием видимой границы раздела фаз между осветляемой водой и илом.

Гидродинамический режим работы вторичных отстойников формируется в результате совокупного воздействия следующих гидродинамических условий:

* режим впуска иловой смеси в сооружение, оцениваемый скоростью ее входа и определяющий интенсивность взаимодействия входящего потока с потоками оседающего ила и осветляемой воды;

* процесс сбора осветленной воды, определяемый в основном скоростью подхода воды к сборному лотку и его удаленностью от уровня осевшего ила;

* режим отсоса осевшего ила, определяемый скоростью входа ила в сосуны илососа, уровнем стояния ила и удаленностью сосунов от сборного лотка.

Вторичные отстойники бывают вертикальными, горизонтальными и радиальными. Для очистных станций пропускной способности до 20000 м 3 /сут применяются вертикальные вторичные отстойники, для очистных станция средней и большой пропускной способности (более 15000 м 3 /сут) -- горизонтальные и радиальные.

При обеспечении условий, повышающих активность процесса микробиального разрушения углеводородов (наличие воды и активное перемешивание, аэрация и обеспечение необходимого количества минеральных солей), биохимическая очистка сточных вод, содержащих нефть и нефтепродукты в концентрациях, соответствующих пределам растворимости и даже выше (до 50 мг/л)г может быть осуществлена в аэротенках или при благоприятных местных условиях к более простых сооружениях - аэрируемых биологических прудах.[ ...]

При соответствующих условиях (наличие кислорода, температура выше 4° С и др.) под действием аэробных микроорганизмов (нитрифицирующих бактерий) происходит окисление азота аммонийных солей, в результате чего образуются сначала соли азотистой кислоты, или нитриты, а при дальнейшем окислении - соли азотной кислоты, или нитраты, т. е- происходит процесс нитрификации. Этот биохимический процесс был открыт в 70-х годах XIX в. Но только в конце XIX в. русскому микробиологу С. Н. Виноградскому удалось выделить чистую культуру нитрифицирующих бактерий. Одна группа этих бактерий окисляет аммиак в азотистую кислоту (нитритные бактерии), вторая - азотистую кислоту в азотную (нитратные бактерии). Нитрификация имеет большое значение в очистке сточных вод, так как этим путем накапливается запас кислорода, который может быть использован для окисления органических без-азотистых веществ, когда полностью уже израсходован для этого процесса весь свободный (растворенный) кислород. Связанный кислород отщепляется от нитритов и нитратов под действием микроорганизмов (денитрифицирующих бактерий) и вторично расходуется для окисления органического вещества. Процесс этот называется денитрификацией. Он сопровождается выделением в атмосферу свободного азота в форме газа.[ ...]

Биохимическая очистка . Метод основан на способности микробов использовать в процессе своей жизнедеятельности различные растворимые органические и неокис-ленные неорганические соединения (например, Сг6+, аммиак, нитриты, сероводород). Поэтому применение биохимического метода дает возможность удалять из сточных вод разнообразные токсичные органические и неорганические соединения. Если скорость биохимического процесса определяется условиями подвода кислорода и поверхностью микробных тел (диффузионные факторы), те применяют аэротенки - смесители с пневматической или механической аэрацией. При пневматической аэрации часть органических соединений может десорбироваться в атмосферу. Если скорость биохимического процесса зависит только от кинетических факторов и практически не зависит от наличия кислорода и числа микробных тел, то применяют биофильтры, окислительные пруды и водоемы.[ ...]

Биохимическая очистка воды от органических примесей является достаточно разработанным и надежным процессом. В основе этого процесса лежит жизнедеятельность микроорганизмов, которые используют в качестве питательных веществ и источников энергии органические и минеральные вещества, содержащиеся в сточных водах. Эти процессы аналогичны процессам, происходящим при самоочищении водоемов.[ ...]

Очистка сточной воды от сероводорода, а также и других примесей (формоль до 90 мг/л, формальдегид до 16 мг/л) осуществляется в аэротенках на одном из предприятий в Казани. Следует отметить, что биохимический процесс угнетается при концентрации формальдегида 1000 мг/л. Значение pH стоков поддерживается в интервале 6,5-7,5, ХПК (химическое потребление кислорода) равно 100-170 мг/л 02. За 15 ч аэрирования в аэротенках содержание сероводорода снижается с 20 до 2 мг/л. При снижении pH стоков ниже 6 процесс очистки от сероводорода ухудшается, а при pH [ ...]

Биохимические процессы расщепления с последующей минерализацией органических соединений могут протекать как в аэробных, так и в анаэробных условиях. При оценке возможного влияния ПАВ на процессы очистки сточных вод, состояние водоемов и определении эффективности их удаления решающее значение имеют аэробные условия, характерные как для водоемов, так и для преобладающих типов очистных сооружений (аэротенков, биофильтров).[ ...]

Биохимическая очистка сточных вод может осуществляться в аэротенках, представляющих собой резервуар или открытый бассейн, где очистка стоков происходит под воздействием микроорганизмов активного или в присутствии кислорода воздуха. Для интенсификации процессов биологической очистки сточных вод выявлена целесообразность подачи в аэротенки вместо воздуха 90 %-ного технического кислорода. При этом процесс очистки стоков ускоряется в 4-5 раз.[ ...]

Биохимическая очистка производственных сточных вод возможна в тех случаях, когда они содержат: органические вещества, способные окисляться в результате биохимических процессов в количестве, допускающем биологическую очистку (по ВПК); питательные вещества (азот, фосфор, калий и др.) в количестве, достаточном для жизнедеятельности микроорганизмов при очистке сточных вод; допустимую концентрацию вредных веществ, при которой не нарушается жизнедеятельность микроорганизмов, и имеют допустимую реакцию среды.[ ...]

При очистке сточных вод важное значение имеет окисление содержащихся в них органических веществ и других восстановителей, так как эти вещества, поступая в водоем, подвергаются в нем химическому И биохимическому окислению за счет растворенного в воде кислорода, жизненно необходимого для водной фауны и флоры. Поэтому лучше провести процесс окисления до сброса сточных вод в водоем.[ ...]

Сточные воды направляются на биофильтры после их осветления в первичных отстойниках. При фильтрации сточных вод через слой загрузки происходит адсорбция биологической пленкой тонко диспергированных веществ, оставшихся в жидкости после первичных отстойников, а также коллоидных и растворенных веществ. Органическая часть загрязнений, задержанных биопленкой, подвергается биохимическому окислению (минерализации) при помощи аэробных бактерий. Кислород, необходимый для жизнедеятельности бактерий, поступает в тело биофильтра путем его естественной или искусственной вентиляции. Величину нагрузки на капельные биофильтры определяют по их окислительной мощности (ОМ). Окислительная мощность - это количество кислорода, получаемое с 1 м3 фильтрующего материала в сутки для снижения БПК направляемых на биофильтры сточных вод. Сущность процесса биологической очистки сточных вод на биофильтрах не отличается от процесса очистки на полях орошения и полях фильтрации. Однако вследствие искусственно созданных благоприятных условий для жизнедеятельности аэробных микроорганизмов процесс биохимического окисления в биофильтрах происходит значительно интенсивнее, чем на полях орошения и полях фильтрации. Поэтому и размеры сооружений для биологической очистки сточных вод в искусственно созданных условиях во много раз меньше сооружений в естественных условиях.[ ...]

Биохимический процесс окисления органических веществ сточных вод (биохимическое окисление) происходит при содействии микроорганизмов-минерализаторов в две фазы: в первой фазе происходит окисление органических веществ, содержащих преимущественно углерод, и азотсодержащих веществ - до начала нитрификации. Поэтому первую фазу часто называют углеродистой. Вторая фаза включает процесс нитрификации, т. е. окисление азота аммонийных солей в нитриты и нитраты. Вторая фаза протекает приблизительно 40 суток, т. е. значительно медленнее, чем первая фаза, занимающая примерно 20 суток, и требует значительно больше кислорода. Биохимическая потребность в кислороде (БПК) учитывает только первую фазу окисления. В природе, однако, трудно разделить обе фазы окисления, так как они происходят почти одновременно. При расчете самоочищающей способности водоемов для решения вопроса о необходимой степени очистки сточных вод до выпуска их в водоем учитывается только первая фаза окисления, так как для второй фазы практически трудно получить данные.[ ...]

Процесс очистки сточных вод при фильтрации их через почву «а полях фильтрации и полях орошения - это совокупность сложных физико-химических и биохимических процессов. Сущность его состоит в том, что при проходе сточных вод через почву в верхнем ее слое задерживаются взвешенные и коллоидальные вещества, образующие на поверхности частичек почвы густо заселенную микроорганизмами пленку. Эта пленка адсорбирует на своей поверхности органические вещества и переводит их в растворимое состояние. Используя кислород, проникающий в поры почвы, микроорганизмы перерабатывают растворимые органические вещества в минеральные соединения. Таким образом, наличие воздуха в почве, а следовательно, и разрыхленность ее являются необходимыми условиями для нормального протекания процесса очистки. Верхние слои почвы (0,2- 0,3 м) находятся в более благоприятных условиях кислородного режима, поэтому в них окисление органических веществ, а также процесс нитрификации происходит более интенсивно. Пригодность почв для полей фильтрации, а следовательно, и нагрузки на них определяются их гранулометрическим составом и влагоем-костью. Для увеличения производительности полей фильтрации на них часто подают предварительно осветленную (отстоенную) сточную воду.[ ...]

При биохимической очистке сточных вод азот является необходимым биогенным элементом. Появление в очищаемой воде нитритов и нитратов свидетельствует о высокой степени минерализации органических загрязнений. При глубокой очистке сточных вод азот переходит в нитраты и молекулярный азот, который выделяется в атмосферу - происходит процесс денитрификации сточных вод.[ ...]

Биохимическое разрушение органических веществ может осуществляться в анаэробных и аэробных условиях. Анаэробная очистка сточных вод производится с помощью анаэробных мик-рооргапизмов-минерализаторов, т. е. не нуждающихся в кислороде. Конечными продуктами анаэробного распада (сбраживания) органических веществ являются газы СН4 (метан), СОг (углекислый газ, диоксид углерода), Ш (водород), N2 (азот), Нг5 (сероводород). Кроме того, в воде остается некоторое количество жирных кислот, сульфидов, гуминовых веществ и других трудноразлагаемых соединений. Анаэробный процесс осуществляется в двух характерных температурных областях: 20- 35 °С (мезофильпое сбраживание) и 45-55 °С (термофильное сбраживание). При термофильном процессе увеличивается скорость минерализации (сбраживания) и происходит более глубокий распад органических веществ. Анаэробный метод применяют при очень большой концентрации органических веществ в производственных сточных водах, чаще для минерализации органических осадков сточных вод.[ ...]

Биохимическая очистка сточных вод П системы канализации. Высокое содержание солей не позволяет взять стоки ЭЛ0У в систему оборотного водоснабжения как подпитку. Поэтому стоки перед сбросом в водоем проходят биохимическую очистку. Биохимическая очистка сточных вод может осуществляться отдельно или в смеси с бытовыми сточными водами, прошедшими механическую и физико-химическую очистку. Применяют одноступенчатую и двухступенчатую биохимическую очистку (рис. 36). Основным сооружением, где проходит биохимический процесс, является аэротенк. Процесс очистки стоков ЭЛ0У в аэротенке может идти в одну или две ступени. При одноступенчатой очистке в аэротенке продолжительность аэрации составляет 6-8 ч, удельный расход воздуха 20-25 м9/м3, концентрация активного ила по сухому веществу 2-3 г/л, количество циркулирующего активного ила 50-705? от расхода сточных вод.[ ...]

При очистке производственных сточных вод сложным является выбор последующей их доочистки. Биохимическая очистка эффективна только при загрязнении сточных вод «биологически мягкими» ПАВ, в то время как промышленность в своих технологических процессах использует в достаточно большом количестве биохимически плохо окисляемые ПАВ. В этом случае приходится ориентироваться на деструктивные методы, в частности, на озонирование, что не только осложняет, но и сильно удорожает очистку сточных вод.[ ...]

Биохимическая очистка является одним из основных методов очистки сточных вод НПЗ как при повторном их использовании в системах оборотного водоснабжения, так и щи сбросе их в водоем. В настоящее время основным сооружением биохимической очистки сточных вод является аэротенк. Однако большая продолжительность обработки сточных вод в аэротенках, значительная емкость сооружений,большой расход воздуха и электроэнергии заставляют искать пути интенсификации этого процесса для снижения капитальных и эксплуатационных затрат.[ ...]

При фильтровании через фильтры взвешенные вещества, состоящие почти полностью из активного ила, кольматируют верхние слои загрузки, в связи с чем потери напора в этих фильтрах увеличиваются не по прямой (как в водопроводных фильтрах), а по параболической кривой. Опыт работы фильтров Зеленоградской станции показывает, что, попадая в более глубокие слои загрузки, организмы активного ила начинают расти, что создает дополнительные потери напора. Именно это является одной из основных особенностей работы зернистых фильтров при очистке сточных вод. Накопившиеся в загрузке фильтра микроорганизмы осуществляют и биохимический процесс разложения органического вещества сточных вод, поэтому при фильтровании биологически очищенных сточных вод значительная часть растворенного кислорода (около 30%) теряется.[ ...]

В процессе очистки сточных вод НПЗ образуется в основном два вида отходов: нефтешлам от сооружений механической и физикохимической очистки и активный ил сооружений биохимической очистки. При существующей на НПЗ системе канализации нефтешлама образуется около 5000 т в год на каждые I млн.т перерабатываемой нефти. При расчетах принимается следующий состав шлама, %; нефтепродуктов - 20, механических примесей - 5, воды - 75.[ ...]

Контроль процессов биохимической денитрификации проводится аналогично контролю процессов биологической очистки сточной воды в аэрационных сооружениях, и при этом особое внимание уделяется оценке форм и концентраций соединений азота.[ ...]

Сущность процесса биологической очистки сточных вод на полях состоит в том, что в процессе фильтрации через почву органические загрязнения сточных вод задерживаются на ней, образуя биологическую пленку, населенную большим количеством микроорганизмов. Пленка адсорбирует коллоидные и растворенные вещества, мелкую взвесь, и они при помощи аэробных бактерий в присутствии кислорода воздуха переходят в минеральные соединения. Атмосферный воздух хорошо проникает в почву на глубину 0,2-0,3 м, где и происходит наиболее интенсивное биохимическое окисление.[ ...]

Скорость биохимических процессов очистки сточных вод в большой степени зависит от температуры среды. При температуре сточных вод ниже 6 °С жизнедеятельность микроорганизмов, а следовательно, и их активность резко снижаются; при температуре свыше 37 °С заметно уменьшается скорость нитрификации в связи с уменьшением в воде растворенного кислорода. Оптимальной является температура 20-28 °С (в присутствии термофильных бактерий может идти аэробный процесс и при 67 °С). При этом в активном иле находится наибольшее количество видов микроорганизмов. С повышением температуры очищаемой во ды до 37 °С необходимо увеличение в 1,2 раза подачи воздуха для аэрации.[ ...]

Локальная очистка сточных вод от эмульгаторов, не способных к биохимическому распаду. Широко применяемый в промышленности в качестве эмульгатора некаль не разрушается в процессе биохимической очистки сточных вод и при известных концентрациях угнетает процессы нитрации и окисления других органических соединений. Кроме того, присутствие некаля в воде значительно ухудшает ее органолептические свойства. Возможность применения метода ионообмена для извлечения некаля из промывных вод основана на способности сильноосновных анионитов (например АВ-16) селективно обменивать ион хлора на анион вгор-бутилнафталинсульфокислоты. Регенерация анионита производится водно-спиртовыми растворами хлористого натрия. После отгонки спирта и части воды из регенерирующего раствора и охлаждения его некаль выпадает в виде кристаллов, а маточник возвращается в цикл ионообмена или регенерации.[ ...]

Последующий процесс регенерации активного ила может происходить или в самом сооружении, производящем биохимическую очистку (аэротенке), или в отдельном сооружении (регенераторе). В первом случае ко времени адсорбции прибавляется время на регенерацию, и сооружение рассчитывается на проток сточных вод по сумме времени; во втором случае сооружение (аэротенк) может быть рассчитано только на проток сточных вод по времени, необходимому для адсорбции, а регенератор рассчитывается на время регенерации только для протока в нем активного ила, расход которого значительно меньше, чем расход сточных вод. Поэтому при определенных условиях второй случай в строительном и эксплуатационном отношении может быть более выгодным, чем первый. Для того чтобы можно было решить эту задачу, проектировщик сооружений биохимической очистки сточных вод должен определять время, необходимое для процесса адсорбции органических веществ активным илом, и время, необходимое для процесса его регенерации.[ ...]

Возможность биохимического окисления СТЭКа и влияние его на процессы биологической очистки сточных вод изучались при эксплуатации модельных установок биофильтров и аэро-тенков-смесителей.[ ...]

Биологически очищенная вода содержит значительное количество аммонийного азота и фосфатов. Азот и фосфор способствуют усиленному развитию водной растительности, последующее отмирание которой приводит к вторичному загрязнению водоема. Контроль процессов биохимической денитрификации проводится аналогично контролю процессов биологической очистки сточной воды в аэрационных сооружениях, и при этом особое внимание уделяется оценке форм и концентраций соединений азота.[ ...]

Разработана технология биохимической очистки сточных вод от ионов тяжелых металлов: Сг, Си2+, 2п2+, №2+, Бе2+, Ре3+. Суть метода заключается в обработке сточной воды накопительной культурой суль-фатвосстанавливающих бактерий, которые в анаэробных условиях при наличии органического питания восстанавливают содержащиеся в воде сульфаты в нерастворимые сульфиды, которые легко отстаиваются и удаляются в виде шлама. Процесс очистки происходит в специальных сооружениях - биовосстановителях.[ ...]

Одной из важнейших задач при биохимической очистке сточных вод в аэротенках является обеспечение кислородом микроорганизмов, которые производят окисление органических примесей в воде. Процесс очистки сточных вод в аэротенке состоит из ряда параллельных и последовательных стадий превращений веществ, участвующих в биохимических реакциях. Изменения, происходящие при этом с кислородом, могут быть представлены следующим образом. При подаче воздуха в воду образуются пузырьки, из которых кислород переходит в иловую смесь и, перемешиваясь, равномерно распределяется в ней. Затем растворенный кислород адсорбируется бактериальными клетками, входящими в состав хлопков активного ила, и расходуется на окисление органических веществ, также адсорбированных хлопками ила. В результате синтеза белков в клетке и деления ее образуются новые живые организмы. Кроме того, образуются продукты распада органических веществ - углекислота, вода, продукты неполного распада органических примесей, которые отводятся от хлопка активного ила в воду. Газообразные продукты распада удаляются из воды в процессе аэрации.[ ...]

Из сказанного следует, что при анализе вод, имеющих в своем составе азотсодержащие органические вещества, значение ХПК, полученное при использовании метода с КгБгОв, будет выше (за счет образования нитратов), чем при использовании обычного метода с К2СГ2О7. Для отличия первую величину целесообразно обозначить символом ХПКМ0 -Она отвечает тому химическому поглощению кислорода, которое произошло бы при очистке сточных вод в биохимических сооружениях, если бы процесс доводили до полной нитрификации азотсодержащих веществ.[ ...]

Интенсивностью прохождения процесса очистки сточных вод в том или ином сооружении определяется окислительная мощность сооружения, под которой понимается количество граммов кислорода, получаемое с 1 мъ сооружения в сутки и используемое для снижения биологической потребности в кислороде сточных вод, окисления аммонийных солей до нитритов и нитратов, а также повышения содержания в сточных водах растворенного кислорода. Величина окислительной мощности для различных вооружений колеблется в широких пределах. При повышенных требованиях к степени очистки биохимически очищенная вода подвергается фильтрации на песчаных фильтрах.[ ...]

Длительный недостаток азота при очистке сточных вод кроме торможения биохимического процесса приводит к образованию труднооседа-ющего активного ила и к потерям его в результате выноса из вторичных отстойников.[ ...]

В последнее время, главным образом при выпуске сточных вод в непосредственной близости от водохранилищ, используемых для отдыха и туризма, предусматривается так называемая «третья степень очистки» вслед за биохимической очисткой. Она состоит в выделении из сточной воды азот- и фосфорсодержащих соединений, которые, будучи биогенными элементами, могут вызвать усиленный рост водорослей в водохранилищах и тем самым нанести им вред. В процессе биохимической обработки фосфаты можно осаждать солями железа или алюминия. Нитратный азот можно удалить в промежуточной анаэробной установке с помощью бактерий, потребляющих кислород нитратов и выделяющих азот в форме N2 или ИгО, Если возможно, то, разумеется, предпочитают всю сточную воду отвести, минуя водохранилища, с помощью обводного канала.[ ...]

Большими возможностями для глубокой очистки сточных вод, в основном от растворенных нефтепродуктов, обладает биохимический метод. Его практическое применение на нефтеперерабатывающих и нефтехимических заводах дает положительные результаты. Однако в системе предприятий для хранения и транспорта нефтепродуктов его еще предстоит внедрять. Для более глубокого понимания сущности и особенностей биохимических процессов при очистке нефтесодержащих сточных вод в книге приведены минимально необходимые научные данные. Практическое применение метода должно опираться на уже: сложившийся опыт разработки и использования сооружений биохимической очистки сточных вод вообще. В связи с этим в книге рассмотрены технологические схемы, основные вопросы устройства и проектирования сооружений биохимической очистки сточных вод и обработки осадков в масштабах современных нефтебаз и других аналогичных предприятий.[ ...]

Более универсальным методом является способ очистки сточных вод с активным илом. Активный ил, под воздействием которого происходит процесс биохимического окисления органических загрязнений, представляет собой скопления бактерий, по внешнему виду напоминающие хлопья гидроокиси железа. Образование активного ила в естественных условиях при подаче сточной воды приводит к созданию комплекса бактерий, способных потреблять различные органические вещества, содержащиеся в производственных сточных водах. Это позволяет более полно очищать сточные воды от загрязнения, чем при микробном методе. Смесь очищенной сточной жидкости и активного ила поступает во вторичные отстойники, где происходит их разделение. Основное количество ила возвращается в аэротенки для повторной работы. Прирост активного ила, определяемый экспериментально, выводится из системы. При отсутствии экспериментальных данных ориентировочно можно считать, что на каждый 1 м3 производственных сточных вод образуется -100-150 г активного ила.[ ...]

Наиболее интенсивное развитие Ciliata наблюдалось при очистке сточных вод производства белково-витаминного концентрата, что соответствовало наиболее высокому коэффициенту зооглейности биопленки (см. табл. 2.10). Сточные воды с низким биохимическим показателем «0,005) отрицательно влияют на состояние простейших. Инфузории инцистируются, образуя вокруг тела цисту - временное защитное образование шаровидной формы. Во время инцистирования все жизненные процессы замедляются и организм переходит в состояние анабиоза.[ ...]

Обработка осадков (рис. 6.22) используется тогда, когда в процессе биохимической очистки сточных вод в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо либо ликвидировать, либо утилизировать. Уплотнение осадков связано с удалением свободной влаги и является необходимой стадией всех вариантов технологических схем обработки осадков. При этом, используя гравитационный, флотационный, центробежный и вибрационный методы, в среднем можно удалить 60% влаги и сократить массу осадка в 2,5 раза.[ ...]

ПАВ неблагоприятно влияют, а иногда делают невозможной очистку сточных вод общепринятыми методами. Так, сточные воды, содержащие соли нефтяных сульфокислот, неионогенные ПАВ и др. нельзя очистить биохимическим способом, это связано с тем, что ПАВ являются ядами для биоценоза, практически не подвергаются окислению, снижают отношение биологической потребности кислорода (БПК) и окисляемости, замедляют рост активного ила и тормозят процесс нитрификации. Эффективность этого метода очистки увеличивается в 100 и более раз после предварительного удаления ПАВ.[ ...]

Для обеспечения устойчивого и эффективного удаления ПАВ сточные воды до аэрации подвергаются предварительной механической очистке. Двухчасовое отстаивание позволяет удалить легкоосаждаемые взвешенные вещества, усреднить состай сточных вод и главным образом выравнить температуру и реакцию среды. Последующее фильтрование через скорые двухслойные фильтры (антрацит-песок) приводит к более глубокому -осветлению сточных вод, что интенсифицирует процесс последующего пенообразования и снижает количество взвешенных веществ в пене. Последнее обстоятельство имеет немаловажное значение при подготовке концентрата пены к повторному ее использованию для стирки белья. Аэрация сточных вод в течение 45-60 мин при подаче сжатого воздуха с интенсивностью 25- 30 м3[м2 - ч обеспечивает удаление 80% ПАВ, т. е. снижает концентрацию их в сточных водах до 20-30 мг/л. Учитывая, что для стирки белья должны применяться моющие средства только на основе «биологически мягких» ПАВ, после такой очистки сточные воды от современных прачечных могут быть беспрепятственно сброшены в городские канализации, имеющие биохимическую очистку. Как показано исследованиями Цветковой в Академии коммунального хозяйства, после фракционирования ПАВ в пену осветленные сточные воды даже без разбавления ■можно доочищать биохимическим методом. Для промывки фильтров могут быть использованы очищенные сточные воды, при этом промывные воды, образующиеся в течение первых 5 мин, вследствие возможного высокого содержания ПАВ рекомендуется направлять в поток сточных вод, поступающих на очистку. Остальная часть сточных вод, а также осадок из отстойников могут быть сброшены в городскую канализацию.[ ...]

Разность между ХПК и БПК характеризует наличие примесей, не окисляющихся биохимическим путем, и количество органических веществ, идущих на построение клеток микроорганизмов. Для бытовых сточных вод БПКполн составляет 85-90% от ХПК- По соотношению БПКполн/ХПК можно судить о возможности применения определенного метода очистки сточных вод. Если соотношение БПК/ ХПК>0,5, то это указывает на возможность применения биохимической очистки сточной воды; при соотношении БПК/ХПК [ ...]

Тиамин, в противоположность биотинам, сам по себе не проявил физиологической активности в процессах биохимической очистки. Однако в сочетании с нафтенатами марганца и хрома тиамин увеличивает содержание углерода в активном иле при окислении алканов и кетонов. Для увеличения активности тиамина в процессах аэробной очистки сточных вод использовались соли железа, меди, марганца и цинка .[ ...]

Одним из наиболее распространенных манометрических приборов для определения газообмена в химических и биохимических процессах является прибор Варбурга. Он нашел широкое применение в биологии при изучении жизнедеятельности микроорганизмов и дыхания тканей . В области очистки сточных вод прибор Варбурга используется для изучения токсичности стоков (АКХ, МИСИ), а также для исследования интенсификации работы биохимических сооружений (Водгео).[ ...]

Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ - дыхания. Водород от окисляемого вещества (см. § 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-6¿i, водоросли, большинство простейших. Аэробные сап-рофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема.

Биохимический показатель



Влияние различных факторов на скорость

Биохимического окисления

Скорость окисления зависит от концентрации органических ве­ществ, равномерности поступления сточной воды на очистку и от содержания в ней примесей. При заданной степени очистки основ­ными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и рН среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

Турбулизация сточных вод в очистных сооружениях способству­ет повышению скорости очистки. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обес­печивает равномерное распределение его в сточной воде.

Важнейшим свойством активного ила является его способность к оседанию. Свойство оседания описывается величиной илового индекса, представляющего собой объем в мл, занимаемый 1 г ила в его естественном состоянии после 30 мин отстаивания. Плохая оседаемость ила ведет к повышенному выносу его с очищенной водой и ухудшению качества очистки. Доза активного илазависит от илового индекса.



Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температу­ры и рН среды.

Установлено, что с повышением температуры сточной водыско­рость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30 °С. Превышение указанной температу­ры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адап­тации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повыше­ние температуры в оптимальных пределах ускоряет процесс разло­жения органических веществ в 2-3 раза. С увеличением температу­ры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила и происходит вспухание его из-за интенсивного развития нитчатых форм бакте­рий.

Отрицательное влияние на скорость очистки может оказать и по­вышение содержания минеральных веществ, находящихся в сточной воде, выше допустимых концентраций.

Перенос кислорода из газовой фазы к клеткам микроорганизмов происходит в два этапа. На первом этапе происходит перенос кисло­рода из воздушных пузырьков в основную массу жидкости, на вто­ром – перенос абсорбированного кислорода из основной массы жид­кости к клеткам микроорганизмов, главным образом, под действием турбулентных пульсаций.

Количество абсорбируемого кислорода может быть вычислено по уравнению массоотдачи:

где М – количество абсорбированного кислорода, кг/с; β V - объем­ный коэффициент массоотдачи, с -1 ; V – объем сточной воды в со­оружении, м 3 ;

с р, с – равновесная концентрация и концентрация кис­лорода в основной массе жидкости, кг/м 3 .

Исходя из уравнения массоотдачи, количество абсорбируемого кислорода может быть увеличено за счет роста коэффициента массоотдачи или движущей силы. Изменения движущей силы воз­можны в результате увеличения содержания кислорода в воздухе, уменьшения рабочей концентрации или повышения давления про­цесса абсорбции. Однако все эти пути или экономически невыгод­ны, или не приводят к значительному росту интенсивности процесса.

Наиболее надежный способ увеличения подачи кислорода в сточ­ную воду – это повышение объемного коэффициента массоотдачи.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных эле­ментов и микроэлементов: N, S, Р, К, Мg, Са, Nа, С1, Fе, Мn, Мо, Ni, Со, Zn, Сu и др. Среди этих элементов основными являются N, Р и К, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нор­мируется, так как их в сточных водах достаточно.

Недостаток азота тормозит окисление органических загрязните­лей и приводит к образованию трудно оседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является ос­новной причиной вспуханий активного ила, плохого оседания и вы­носа его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот – в форме аммонийной группы NН 4 + , а фосфор – в виде солей фосфорных кислот.

При нехватке азота, фосфора и калия в сточную воду вводят раз­личные азотные, фосфорные и калийные удобрения. Соответствую­щие соединения азота, фосфора и калия содержатся в бытовых сточ­ных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

Конструкции аэротенков

В аэротенке-отстойнике (рис. 17) зона аэрации отделена от зоны отстаивания. Сточная вода подается в центре, а отводится по лотку 1. В зоне отстаивания образуется слой взвешенного активного ила, через который фильтруется сточная вода. Избыточный активный ил отводится из зоны взвешенного слоя по трубам, а возвратный ил поступает в зону аэрации.

Рис. 17. Аэротенк-отстойник: 1 – лоток; 2 –

Иначе устроен аэротенк-осветлитель (рис. 18). Сточная вода поступает в зону аэрации, где смешивается с активным илом и аэрируется. Затем смесь через окна 1 направляется в зону осветления и зону дегазации. В зоне осветления возникает взвешенный слой активного ила, через который фильтруется иловая смесь. Очищенная вода поступает в лотки и удаляется из аэротенка.

Рис. 18. Аэротенк-осветлитель: 1 –

Для интенсификации процесса биохимической очистки сточные воды перед аэротенком предлагается обрабатывать окислителями (озоном) с целью снижения ХПК. Для этой цели разработан процесс очистки сточных вод в глубоких шахтах. В них устанавливают вертикальные трубы, доходящие почти до дна шахты. Сточная вода подается по трубам одновременно с воздухом. Под действием высокого гидростатического давления кислород воздуха почти полностью растворяется в сточной воде. При этом степень его использования микроорганизмами увеличивается. Иловая смесь по подъемной трубе поднимается вверх, и после дегазации поступает в отстойник. Очистная установка занимает небольшую площадь. При ее работе отсутствует выделение запахов и достигается высокая степень очистки.

Обработка осадков

В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы. Осадки сточных вод могут быть в основном минерального состава, в основном органического состава и смешанные. Они характеризуются содержанием сухого вещества, содержанием беззольного вещества, элементным составом, гранулометрическим составом.

Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника. В осадках содержится свободная и связанная вода, свободная вода (60-65 %) может быть легко удалена из осадка, связанная вода (30-35 %) – коллоидно-связанная и гигроскопическая, удаление которой затруднено.

Для обработки и обезвреживания осадков используются различные технологические процессы, представленные на рис. 20.

Уплотнение активного ила связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении удаляется в среднем 60 % влаги и масса осадка сокращается в 2,5 раза. Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

Процесс стабилизации осадков проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при полощи микроорганизмов в анаэробных и аэробных условиях.

Рис. 20. Схемы процессов обработки осадка

Кондиционирование осадков проводят для снижения удельного сопротивления и улучшения водоотдачи вследствие изменения форм связи воды. Кондиционирование проводят реагентными и безреагентными способами. При реагентной обработке осадка происходит коагуляция с разрывом сольвентных оболочек и улучшаются водоотдающие свойства.

К безреагентным методам обработки относятся тепловая обработка, замораживание с последующим отстаиванием, жидкофазное окисление, электрокоагуляция и радиационное облучение.

Термическую обработку осадков проводят в случае их подготовки к рекуперации. Сушку осадков проводят в сушилках различной конструкции.

Биохимическая очистка сточных вод

Сточные воды, прошедшие физико-химическую очистку, содержат еще достаточно большое количество растворенных, а в ряде случаев сильно диспергированных органических загрязнений. Поэтому дальнейшую очистку таких вод целесообразно проводить биохимическим методом.

Биохимическая очистка возможна только для производственных сточных вод, загрязненных веществами, которые могут быть окислены микроорганизмами. Используются аэробные и анаэробные методы биохимической очист­ки сточных вод. При аэробной очистке микроорганизмы куль­тивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют, главным об­разом, для обезвреживания осадков.

Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие получает та или иная группа в зависимости от условий работы системы.

Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают либо за счет фотосинтеза, используя энергию света, либо за счет хемосинтеза путем окисления некоторых неорганических соединений, например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.

Механизм биологического окисления в аэробных условиях гетеротрофными бактериями приводит к наращиванию новой биомассы и выделению CO 2 , N 2 , P:

органические вещества + O 2 + N 2 + P → микроорганизмы + СO 2 + H 2 O + биологически неокисляемые растворенные вещества

микроорганизмы + O 2 → CO 2 + H 2 O + N + P + биологически неразрушаемая часть клеточного вещества.

В очищенном стоке остаются биологически неокисляемые вещества, преимущественно в растворенном состоянии, т.к. коллоидные и нерастворенные вещества удаляются из воды методом сорбции.

Анаэробный процесс метановой ферментации происходит по следующей схеме:

органические вещества + H 2 O → CH 4 + CO 2 + C 5 H 7 NO 2 + NH 4 + + HCO 3 –

Анаэробный процесс денитрификации происходит в две стадии:

органическое вещество + NO 3 – → NO 2 – + CO 2 + H 2 O;

органическое вещество + NO 2 – → N 2 + CO 2 + H 2 O + OH – .

Перечисленные схемы процессов далеко не исчерпывают всех возможностей биоокисления, но именно они наиболее часто встречаются в практике очистки как городских, так и производственных сточных вод.

Скорость и полнота биохимических превращений в процессе очистки сточных вод определяются условиями биохимической очистки, создаваемыми в аэрационных сооружениях – аэротенках. Существенное влияние на эффективность окислительных процессов оказывают следующие факторы: централизация и децентрализация впуска очищаемых сточных вод и возвратного активного ила, тип аэратора, конструктивные особенности вторичных отстойников. Исследование кинетики окисления показало, что начальный этап процесса окисления с момента смешения сточных вод с активным илом в первые 20-40 мин аэрации характеризуется высокой степенью окислительной активности бактерий, которая затем падает по экспоненциальной зависимости.

Основными факторами, влияющими на интенсивность процесса, являются следующие:

· Оптимальный баланс источников углеродного и азотистого питания и обеспечивающий этот баланс технологический режим; наличие биогенных элементов;

· Исключительная приспособляемость микроорганизмов к изменяющимся условиям существования;

· Симбиотический характер существования микробных ассоциаций, что позволяет сформировать активный ил с усиленными физиологическими свойствами.

Для создания специфической микрофлоры необходимо подавать на очистные сооружения концентрированные сточные воды стабильного состава в течение длительного времени. Это способствует индуцированию ферментов, изменяет тип обмена веществ бактериальных клеток и закрепляет приобретенные признаки наследственно. В результате формируется активный ил с повышенными окислительными свойствами, что приводит к росту окислительной мощности сооружений биоочистки. Специфическая микрофлора активного ила способна нивелировать залповые выбросы сточных вод, характеризуемых высокими концентрациями загрязняющий веществ.

Биохимический показатель

Сточные воды, направляемые на биохи­мическую очистку, характеризуются величиной БПК и ХПК.

БПК - это биохимическая потребность в кислороде или количество кисло­рода, использованного при биохимических процессах окисления орга­нических веществ (не включая процессы нитрификации) за опреде­ленный промежуток времени (2, 5, 8, 10, 20 сут), в мг О 2 на 1 мг вещества. Например: БПК 5 - биохимическая потребность в кисло­роде за 5 сут. БПК п - полная биохимическая потребность в кисло­роде до начала процессов нитрификации. ХПК - химическая по­требность в кислороде, т.е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде. ХПК также выражают в мг О 2 на 1 мг вещества.

Для неорганических веществ, которые практически не поддают­ся окислению, также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать био­химической очистке.

Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают соотношение БПК/ХПК.

Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очист­ки сточных вод. Его значения колеблются в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (не больше 0,3); бытовые сточные воды - свыше 0,5. По биохимическому показателю концентрации загрязнений и токсичности промышленные сточные воды делят на четыре группы.

Первая группа имеет биохимический показатель выше 0,2. К этой группе, например, относятся сточные воды пищевой промышленно­сти (дрожжевых, крахмальных, сахарных, пивоваренных заводов), прямой перегонки нефти, синтетических жирных кислот, белково-витаминных концентратов и др. Органические загрязнения этой груп­пы не токсичны для микробов.

Вторая группа имеет показатель в пределах 0,02-0,10. В эту груп­пу входят сточные воды коксования, азотнотуковых, коксохимичес­ких, газосланцевых, содовых заводов. Эти воды после механической очистки могут быть направлены на биохимическое окисление.

Третья группа имеет показатель 0,001-0,01. К ней относятся, на­пример, сточные воды процессов сульфирования. хлорирования, про­изводства масел и ПАВ, сернокислотных заводов, предприятий чер­ной металлургии, тяжелого машиностроения и др. Эти воды после механической и физико-химической локальной очистки могут быть направлены на биохимическое окисление.

Четвертая группа имеет показатель ниже 0,001. Сточные воды этой группы в основном содержат взвешенные частицы. К этим во­дам относятся стоки угле- и рудообогатительных фабрик и др. Для них используют механические методы очистки.

Сточные воды первой и второй групп относительно постоянны по виду и расходу загрязнений. После очистки они применимы в системах оборотного водоснабжения. Сточные воды третьей группы образуются периодически и отличаются переменной концентрацией загрязнений, устойчивых к биохимическому окислению. Они загряз­нены веществами, которые хорошо растворимы в воде. Эти воды не­пригодны для оборотного водоснабжения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биохимические методы очистки сточных вод

1. Общие положения

Биохимический метод применяется для очистки хозяйственно-бытовых и промышленных сточных вод от многих растворенных органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитритов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания в процессе жизнедеятельности - органические вещества для микроорганизмов являются источником углерода.

Контактируя с органическими веществами, микроорганизмы частично разрушают их, превращая в воду, диоксид углерода, нитрит- и сульфат-ионы и др. Другая часть вещества идет на образование биомассы. Разрушение органических веществ называют биохимическим окислением. Некоторые органические вещества способны легко окисляться, а некоторые не окисляются совсем или окисляются очень медленно.

При отношении (БПК/ХПК)*100%=50% вещества поддаются биохимическому окислению. При этом необходимо, чтобы сточные воды не содержали ядовитых веществ и примесей солей тяжелых металлов.

Для неорганических веществ, которые практически не поддаются окислению. Также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать биохимической очистке.

Известны аэробные и анаэробные методы биохимической очистки сточных вод. Аэробный метод основан на использовании аэробных групп организмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 0 С. При изменении кислородного и температурного режима состав и число микроорганизмов меняются. При аэробной очистке микроорганизмы культивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют главным образом для обезвреживания осадков.

1.1 Состав активного ила и биопленки

Активный ил состоит из живых организмов и твердого субстрата. Живые организмы представлены скоплениями бактерий и одиночными бактериями, простейшими червями, плесневыми грибами, дрожжи, актиномицетами и редко - личинками насекомых, рачков, а также водорослями и др.

Активный ил представляет собой амфотерную коллоидную систему. При pH=4-9 имеющую отрицательный заряд.

Например, химический состав активного ила системы очистки коксохимического завода отвечает формуле; городских сточных вод.

Качество ила определяется скоростью его осаждения и степенью очистки жидкости. Крупные хлопья оседают быстрее, чем мелкие. Состояние ила характеризует иловый индекс, который представляет собой отношение объема осаждаемой части активного ила к массе высушенного осадка (в граммах) после отстаивания в течение 30 мин. Чем хуже оседает ил, тем более высокий иловый индекс он имеет.

1.2 Биохимический показатель

Биохимической активностью микроорганизмов называют биохимическую деятельность, связанную с разрушением органических загрязнений сточных вод. Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают отношение.

Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очистки сточных вод. Его значение колеблется в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (0,05-0,3); бытовые сточные воды - свыше 0,5.

Скорость биохимических реакций определяется активностью ферментов, которая зависит от температуры, pH и присутствия в сточной воде различных веществ. С повышением температуры скорость ферментативных процессов повышается, но до определенного предела. Для каждого фермента имеется оптимальная температура, выше которой скорость реакции падает. Для разрушения сложной смеси органических веществ необходимо 80-100 различных ферментов. К числу веществ (активатора), которые повышают активность ферментов, относятся многие витамины и катионы. В тоже время соли тяжелых металлов, синильная кислота, антибиотики являются ингибитором. Они блокируют активные центры фермента, препятствуют его реакции с субстратом, т.е. резко снижают активность.

Суммарные реакции биохимического окисления в аэробных условиях схематично можно представить в следующем виде:

Реакция (1) показывает характер окисления вещества для удовлетворения энергетических потребностей клетки, реакция (2) - для синтеза клеточного вещества.

1.3 Прирост биомассы

В процессе очистки сточных вод происходит процесс прироста биомассы, который зависит от химической природы загрязнений, вида и возврата микроорганизмов, БПК и ХПК, от концентрации фосфора и азота в сточной воде, от ее температуры. Прирост биомассы зависит от скорости размножения микроорганизмов и имеет сложную зависимость от времени.

Для приближенных расчетов прирост биомассы (Пр) можно определить по формуле

Коэффициент К, характеризующий качество ила, для ПСВ определяется экспериментально и изменяется в пределах 0,1-0,9.

1.4 Влияние различных факторов на скорость биохимического окисления

При заданной степени очистки основными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и pH среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

Турбулизация сточных вод в очистных сооружениях способствует распаду хлопьев активного ила па более мелкие и увеличивает скорость поступления питательных веществ и кислорода к микроорганизмам, что приводит к повышению скорости очистки. Интенсивность перемешивания зависит от количества подаваемого воздуха. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обеспечивает равномерное распределение его в сточной воде.

Доза активного ила зависит от илового индекса. Чем меньше иловый индекс, тем большую дозу активного ила необходимо подавать на очистные сооружения. Рекомендуется поддерживать следующие соотношения:

Иловый индекс, мг/л 50 80 120 150 200 250 300

Доза ила, г/л 6 4,3 3 2,5 2 15 1

Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температуры и pH среды.

Установлено, что с повышением температуры сточной воды скорость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30°С. Превышение указанной температуры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адаптации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повышение температуры в оптимальных пределах ускоряет процесс разложения органических веществ в 2-3 раза. С увеличением температуры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила происходит вспухание его из-за интенсивного развития нитчатых форм бактерий. По степени токсичности тяжелые металлы можно расположить в следующем порядке: . Соли этих металлов снижают скорость очистки. Допустимая концентрация токсичных веществ, при которой возможно биологическое окисление, зависит от природы этих веществ. В тех случаях, когда сточные воды содержат несколько видов токсичных веществ, расчет очистных сооружений ведут по наиболее сильнодействующим из них.

Абсорбция и потребление кислорода. Для окисления органических веществ микроорганизмам необходим кислород, но они могут использовать его только в растворенном в воде виде. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, которые, по возможности, равномерно распределяют в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам.

Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных элементов и микроэлементов:N, S, P, K, Mg, Ca, Na, Cl, Fe, Mn, Mo, Ni, Co, Zn, Cu и др.Среди этих элементов основными являются N, Р и K, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нормируется, так как их в сточных водах достаточно.

Недостаток азота тормозит окисление органических загрязнителей и приводит к образованию труднооседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является основной причиной вспуханий активного ила, плохого оседания и выноса его из очистных сооружений, замедления роста ила и снижения интенсивности окисления.

При нехватке азота, фосфора и калия в сточную воду вводят различные азотные, фосфорные и калийные удобрения. Соответствующие соединения азота, фосфора и калия содержатся в бытовых сточных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

2. Очистка в природных условиях

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах. Искусственными сооружениями являются аэротенки и биофильтры разной конструкции. Тип сооружений выбирают с учетом местоположения завода, климатических условий, источника водоснабжения, объема промышленных и бытовых сточных вод, состава и концентрации загрязнений. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

2.1 Поля орошения

Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

Земледельческие поля орошения имеют следующие преимущества перед аэротенками:

1) снижаются капитальные и эксплуатационные затраты;

2) исключается сброс стоков за пределы орошаемой площади;

3) обеспечивается получение высоких и устойчивых урожаев сельскохозяйственных растений;

4) вовлекаются в сельскохозяйственный оборот мало продуктивные земли.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта микробиальную пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения. В глубокие слои почвы проникание кислорода затруднено, поэтому наиболее интенсивное окисление происходит в верхних слоях почвы (0,2-0,4 м). При недостатке кислорода в прудах начинают преобладать анаэробные процессы.

Поля орошения лучше устраивать на песчаных, суглинистых и черноземных почвах. Грунтовые воды должны быть не выше 1,25 м от поверхности. Если грунтовые поды залегают выше этого уровня, то необходимо устраивать дренаж.

[принимают равными 5-20 м 3 (га*сут)]

B зимнее время сточную воду направляют только на резервные поля фильтрации. Так как в этот период фильтрация сточной воды или прекращается полностью или замедляется, то резервное поле фильтрации проектируют с учетом площади намораживания Fн (в м 2):

где Q - расход сточных вод, м 3 /сут; Tн - число дней намораживания; ? - коэффициент, характеризующий величину зимней фильтрации; hн и hо - высоты слоев соответственно намораживания и зимних осадков, м; ?л - плотность льда, кг/м 3 .

2.2 Биологические пруды

Представляют собой каскад прудов, состоящий из 3-5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная сточная вода.

Пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными сооружениями. Различают пруды с естественной или искусственной аэрацией.

Пруды с естественной аэрацией имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами.

3. Очистка в искусственных сооружениях

В искусственных условиях очистку проводят в аэротенках или биофильтрах.

3.1 Очистка в аэротенках

Аэротенками называют железобетонные аэрируемые резервуары. Процесс очистки в аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила (рис. 1). Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

Рис. 1. Схема установки для биологической очистки: 1 - первичный отстойник; 2 - предаэратор; 3 - аэротенк; 4 - регенератор; 5 - вторичный отстойник

Перед аэротенком сточная жидкость должна содержать не более 150 мг/л взвешенных частиц и не более 25 мг/л нефтепродуктов. Температура очищаемых сточных вод не должна быть ниже 6°С и выше 30°С, а pH - в пределах 6,5-9.

Аэротенк представляет собой открытый бассейн, оборудованный устройствами для принудительной аэрации. Они бывают двух-, трех- и четырехкоридорные.

Глубина аэротенков 2-5 м.

Наиболее распространены коридорные аэротенки, работающие как вытеснители, смесители и с комбинированными режимами.

Схемы аэротенков с различной структурой потоков сточной воды и возвратного активного ила показаны на рис. 2.

Рис. 2. Аэротенки с различной структурой потоков сточной воды и возвратного активного ила: а - аэротенк-вытесннтель; б- аэротенк-смеситель; в-аэротенк с рассредоточенной подачей сточной воды

3.2 Аэрация

Растворимость кислорода в воде мала (зависит от температуры и давления), поэтому для насыщения ее кислородом подают большое количество воздуха.

Растворимость кислорода в чистой воде при давлении 0,1 МПа представлена ниже:

Температура, °С 5 10 12 14 16 18 20 22 24 26 28

Растворимость, 12,8 11,3 10,8 10,3 9,8 9,4 9,0 8,7 8,3 8,0 7,7

При аэрации должна быть обеспечена большая поверхность контакта между воздухом, сточной водой и илом, что является необходимым условием эффективной очистки. На практике используют пневматический, механический и пневмомеханический способы аэрации сточной воды в аэротенках.

Продолжительность аэрации в аэротенках всех типов равна

x-(Lа-L?)/,

где La и L? - БПКполн поступающей на очистку воды и очищенной воды, мг О2/л; а - доза ила, г/л; Sл - зольность ила в долях единицы; ? - средняя расчетная скорость окисления, мг БПКполн/г беззольного вещества ила в 1 ч.

3.3 Очистка в биофильтрах

Биофильтры - сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов. Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра.

В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и большой удельной поверхностью: щебень, гравий, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры, шестигранные блоки; металлические и пластмассовые сетки, скрученные в рулоны.

Рис. 3. Схемы установок для очистки сточных вод биофильтрами: а - одноступенчатая; б - двухступенчатая; 1 - первичные отстойники; 2,4 - биофильтры 1 и 2 ступеней; 3 - вторичные отстойники; 5 - третичный отстойник

Биофильтры с капельной фильтрацией имеют низкую производительность, но обеспечивают полную очистку. Гидравлическая нагрузка их равна 0,5-3 м 3 /(м 2 сут). Их используют для очистки вод до 1000 м 3 /сут при БПК не более 200 мг/л. Высоконагружаемые биофильтры работают при гидравлической нагрузке 10- 30 м 3 /(м 2 сут), т. е. очищают в 10-15 раз больше сточной воды, чем капельные. Однако они не обеспечивают полную биологическую очистку.

Для лучшего растворения кислорода производят аэрацию. Объем воздуха, подаваемого в биофильтр, не превышает 16 м 3 на 1 м 3 сточной воды. При БПК20>ЗОО мг/л обязательна рециркуляция очищенной воды.

Башенные биофильтры применяют для очистных сооружений производительностью до 5000 м 3 /сут.

Рис. 4. Биотенк-биофильтр (1 - корпус; 2 - элементы загрузки)

4. Анаэробные методы биохимической очистки

Анаэробные методы обезвреживания используют для сбраживания осадков, образующихся при биохимической очистке производственных сточных вод, а также как первую ступень очистки очень концентрированных промышленных сточных вод (БПКполн?4-5 г/л), содержащих органические вещества, которые разрушаются анаэробными бактериями в процессах брожения. В зависимости от конечного вида продукта различают следующие виды брожения: спиртовое, пропионовокислое, молочнокислое, метановое и др. Конечными продуктами брожения являются: спирты, кислоты, ацетон, газы брожения (CO2, H2, CH4).

Для очистки сточных вод используют метановое брожение. Этот процесс очень сложный и многостадийный. Механизм его окончательно не установлен. Считают, что процесс метанового брожения состоит из двух фаз: кислой и щелочной (или метановой). В кислой фазе из сложных органических веществ образуются низшие жирные кислоты, спирты, аминокислоты, аммиак, глицерин, ацетон, сероводород, диоксид углерода и водород. Из этих промежуточных продуктов в щелочной фазе образуются метан и диоксид углерода. Предполагается, что скорости превращений веществ в кислой и щелочной фазах одинаковы.

Основная реакция метанообразования может быть записана уравнением (Н2А - органическое вещество, содержащее водород):

СО2 + 4Н2А - СН4+4А+2Н2О.

Процесс брожения проводят в метантенках - герметически закрытых резервуарах, оборудованных приспособлениями для ввода несброженного и отвода сброженного осадка. Схема метантенка показана на рис. 5. Перед подачей в метантенк осадок должен быть по возможности обезвожен.

Рис. 5. Метантенк: 1 - корпус; 2 - труба; 3 - мешалка; 4 - змеевик

очистка сточный вода аэрация

Основными параметрами аэробного сбраживания являются температура, регулирующая интенсивность процесса, доза загрузки осадка и степень его перемешивания. Процессы сбраживания ведут в мезофильных (30-35°С) и термофильных (50-55°С) условиях. Полного сбраживания органических веществ в метантенках достичь нельзя. Все вещества имеют свой предел сбраживания, зависящий от их химической природы. В среднем степень распада органических веществ составляет около 40%.

При сбраживании выделяются газы, которые в среднем содержат 63-65% метана, 32-34% СО2. Теплотворная способность газа 23 МДж/кг. Его сжигают в топках паровых котлов. Пар используют для нагрева осадков в метантенках или для других целей.

5. Обработка осадков

В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы.

Эти операции весьма затруднены, поскольку осадки имеют разный состав и большую влажность.

Их подразделяют на три группы:

1) осадки в основном минерального состава;

2) осадки в основном органического состава;

3) смешанные осадки, содержащие как минеральные, так и органические вещества.

Осадки характеризуются содержанием сухого вещества (в г/л или в %); содержанием беззольного вещества (в % от массы сухого вещества); элементным составом; кажущейся вязкостью и текучестью; гранулометрическим составом.

Как правило, осадки сточных вод представляют собой труднофильтруемые суспензии. Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника.

В осадках содержится свободная и связанная вода. Свободная вода (60-65%) сравнительно легко может быть удалена из осадка, связанная вода (30-35%) - коллоидно-связанная и гигроскопическая - гораздо труднее. Коллоидно-связанная влага обволакивает твердые частицы гидратной оболочкой и препятствует их соединению в крупные агрегаты. Некоторое количество этой влаги удаляется из осадка после коагуляции в процессе фильтрования.

5.1 Уплотнение активного ила

Уплотнение осадков связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении в среднем удаляется 60% влаги, и масса осадка сокращается в 2,5 раза. Наиболее трудно уплотняется активный ил. Влажность активного ила составляет 99,2-99,5%. Взвешенные частицы ила имеют небольшой размер и плотную гидратную оболочку, которая препятствует уплотнению частиц. Уплотнение активного ила сопровождается ростом удельного сопротивления при фильтровании.

Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

Гравитационный метод уплотнения является наиболее распространенным и применяется для уплотнения избыточного активного ила и сброженных осадков. Он основан на оседании частиц дисперсной фазы. В качестве илоуплотнителей используют вертикальные или радиальные отстойники. Наибольшее распространение имеют илоуплотнители радиального типа, так как в них получается активный ил более высокой концентрации при меньшей длительности уплотнения.

Гравитационное уплотнение не эффективно: наблюдается высокая концентрация взвешенных веществ в отделяемой воде и большая влажность уплотненных осадков, что удорожает последующую их обработку.

Флотационный метод уплотнения осадков основан на прилипании частиц активного ила к пузырькам воздуха и всплывании вместе с ними на поверхность. Для образования пузырьков воздуха может быть использован метод напорной флотации, вакуум-флотации, электрофлотации и биологической флотации (за счет развития и жизнедеятельности микроорганизмов при подогреве осадка до 35-55°С). Достоинства метода состоят в сокращении продолжительности процесса и более высокой степени уплотнения.

Рис. 5. Схема установки уплотнения флотацией активного ила от обработки городских сточных вод: 1 - первичный отстойник; 2 - аэротенк; 3 - вторичный отстойник; 4 - уплотнитель осадка из первичного отстойника; 5 - флотатор; 6 - емкость для уплотненного ила

5.2 Стабилизация осадков

Этот процесс проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при помощи микроорганизмов в анаэробных и аэробных условиях. В анаэробных условиях проводится сбраживание в септиках, двухъярусных отстойниках, осветлителях-перегнивателях и метантенках. Септики и отстойники используют на установках небольшой производительности. Наиболее широкое распространение получили метантенки, рассмотренные ранее.

Аэробная стабилизация заключается в продолжительной обработке ила в аэрационных сооружениях с пневматической, механической или пневмомеханической аэрацией. В результате такой обработки происходит распад (окисление) основной части биоразлагаемых органических веществ (до СО2, Н2О и NH3). Оставшиеся органические вещества становятся неспособными к загниванию, т.е. стабилизируются. Расход кислорода на процесс стабилизации приблизительно равен 0,7 кг/кг органического вещества.

Недостаток процесса по сравнению со сбраживанием - высокие затраты на аэрирование.

5.3 Обезвоживание осадков

Осадки обезвоживают на иловых площадках и механическим способом.

Иловые площадки - это участки земли (корты), со всех сторон окруженные земляными валами. Если почва хорошо фильтрует воду и грунтовые воды находятся на большой глубине, иловые площадки устраивают на естественных грунтах. При залегании грунтовых вод на глубине до 1,5 м фильтрат отводят через специальный дренаж из труб, а иногда делают искусственное основание. Рабочая глубина площадок - 0,7-1 м. Площадь иловых площадок зависит от количества и структуры осадка, характера грунта и климатических условий. Иловую воду после уплотнения направляют на очистные сооружения.

В районах с теплым климатом для очистных сооружений производительностью более 10000 могут быть оборудованы площадки с поверхностным удалением воды. Они представляют собой каскад из 4-8 площадок.

Литература

1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов / Т.А. Акимова, В.В. Хаскин; 2-е изд., перераб. и дополн. - М.: ЮНИТИ, 2009. - 556 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

2. Акимова Т.В. Экология. Природа-Человек-Техника: Учебник для студентов техн. направл. и специал. Вузов / Т.А. Акимова, А.П. Кузьмин, В.В. Хаскин. - Под общ. ред. А.П. Кузьмина; Лауреат Всеросс. конкурса по созд. новых учебников по общим естественнонауч. дисципл. для студ. вузов. М.: ЮНИТИ-ДАНА, 2006. - 343 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

3. Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр "Академия", 2006. - 256 с. Рекомендован Минобр. РФ в качестве учебника для бакалавров, магистров и студентов вузов.

4. Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2006. - 424 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

5. Коробкин В.И. Экология: Учебник для студентов вузов / В.И. Коробкин, Л.В. Передельский. -6-е изд., доп. И перераб. - Ростон н/Д: Феникс, 2007. - 575 с. Лауреат Всеросс. конкурса по созд. новых учебников по общим естественнонауч. дисципл. для студ. вузов. Рекомендовано Минобр. РФ в качестве учебника для студентов вузов.

6. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд. Учебник для вузов. М.: Дрофа, 2008. - 624 с. Рекомендован Минобр. РФ в качестве учебника для студентов технич. вузов.

7. Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов. / Под ред. В.А. Соловьева, Ю.А. Кротова.- 4-е изд., испр. - СПб.: Химия, 2007. - 238 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

8. Одум Ю. Экология т.т. 1, 2. Мир, 2006.

9. Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов / Н.М. Чернова, А.М. Былова. - М.: Дрофа, 2008. - 416 с. Допущено Минобр. РФ в качестве учебника для студентов высших педагогических учебных заведений.

10. Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям / Л.И. Цветкова, М.И. Алексеев, Ф.В. Карамзинов и др.; под общ. ред. Л.И. Цветковой. М.: АСБВ; СПб.: Химиздат, 2007. - 550с.

11. Экология. Под ред. проф. В.В. Денисова. Ростов-н/Д.: ИКЦ "МарТ", 2006. - 768 с.

Размещено на Allbest.ru

...

Подобные документы

    Механическая очистка сточных вод на канализационных очистных сооружениях. Оценка количественного и качественного состава, концентрации загрязнений бытовых и промышленных сточных вод. Биологическая их очистка на канализационных очистных сооружениях.

    курсовая работа , добавлен 02.03.2012

    Эффективность процесса биохимической очистки сточных вод, концентрация активного ила. Использование технического кислорода для аэрации. Биоадсорбционный способ биологической очистки. Использование мутагенеза, штаммов и адаптированных микроорганизмов.

    контрольная работа , добавлен 08.04.2015

    Очистка промышленных сточных вод с использованием электрохимических процессов и мембранных методов (ультрафильтрация, нанофильтрация, обратный осмос). Новые изобретения для очистки и обеззараживания коммунально-бытовых и сельскохозяйственных сточных вод.

    курсовая работа , добавлен 09.12.2013

    Анализ полной биологической очистки хозяйственно–бытовых сточных вод поселка городского типа. Технологическая схема биологической очистки стоков и ее описание. Расчет аэротенка-вытеснителя с регенератором, технологической схемы очистки сточных вод.

    дипломная работа , добавлен 19.12.2010

    Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа , добавлен 04.10.2009

    Понятие, принципы и возможные методы очистки сточных вод, особенности их бытовых, производственных и поверхностных видов. Общая характеристика используемых систем очистки, их эффективность. Проблемы и нарушения при очистке бытовых и промышленных стоков.

    реферат , добавлен 08.11.2011

    Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа , добавлен 30.05.2014

    Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа , добавлен 16.09.2015

    Очистка сточных вод как комплекс мероприятий по удалению загрязнений, содержащихся в бытовых и промышленных водах. Особенности механического, биологического и физико-химического способа. Сущность термической утилизации. Бактерии, водоросли, коловратки.

    презентация , добавлен 24.04.2014

    Состав сооружений, расположенных на окраине п. Белый Яр и технологическая схема. Количественная и качественная характеристика стоков. Зарубежный опыт использования искусственных водно-болотных экосистем для очистки сточных вод в условиях холодного климата

← Вернуться

×
Вступай в сообщество «nikanovgorod.ru»!
ВКонтакте:
Я уже подписан на сообщество «nikanovgorod.ru»